Optimal Bandwidth Selection for Kernel Regression Using a Fast Grid Search and a GPU

被引:4
作者
Rohlfs, Chris [1 ,2 ]
Zahran, Mohamed [3 ]
机构
[1] Morgan Stanley, Wealth Management Risk, New York, NY 10036 USA
[2] Columbia Univ, Deep Learning, New York, NY 10027 USA
[3] NYU, Comp Sci Dept, New York, NY 10003 USA
来源
2017 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW) | 2017年
关键词
nonparametric; kernel; regression; optimal bandwidth; cross-validation; GPU;
D O I
10.1109/IPDPSW.2017.130
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This study presents a new algorithm and corresponding statistical package for estimating optimal bandwidth for a nonparametric kernel regression. Kernel regression is widely used in Economics, Statistics, and other fields. The formula for the optimal "bandwidth," or smoothing parameter, is well-known. In practice, however, the computational demands of estimating the optimal bandwidth have historically been prohibitively high. Consequently, researchers typically select bandwidths for kernel regressions using ad hoc rules of thumb. This paper exploits the Single Program Multiple Data (SPMD) parallelism inherent in optimal bandwidth calculation to develop a method for computing optimal bandwidth on a GPU. Using randomly generated datasets of different sizes, this approach is shown to reduce the run time by as much as a factor of seven.
引用
收藏
页码:550 / 556
页数:7
相关论文
共 30 条
[1]  
Amrouche A., 2010, ENG APPL ARTIFICIAL, V23
[2]   Computing of high breakdown regression estimators without sorting on graphics processing units [J].
Beliakov, G. ;
Johnstone, M. ;
Nahavandi, S. .
COMPUTING, 2012, 94 (05) :433-447
[3]  
Betz R., 2013, P 5 INT WORKSH SOFTW
[4]  
Cai X., 2013, J SUPERCOMPUTING, V63
[5]  
Cai X., 2012, 2012 IEEE 26 INT PAR
[6]  
Cheng D., 2014, P 20 ACM SIGKDD INT
[7]  
Chow G., 2012, P ACM SIGDA INT S FI
[8]  
Constans P., 2000, J CHEM INF COMPUT SC, V40
[9]   Kernel estimation in high-energy physics [J].
Cranmer, K .
COMPUTER PHYSICS COMMUNICATIONS, 2001, 136 (03) :198-207
[10]  
Creel M., 2012, 2012 SC COMP HIGH PE