Global rigid body modeling of macromolecular complexes against small-angle scattering data

被引:747
作者
Petoukhov, MV
Svergun, DI [1 ]
机构
[1] DESY, European Mol Biol Lab, D-2000 Hamburg, Germany
[2] Russian Acad Sci, Inst Crystallog, Moscow 117333, Russia
关键词
D O I
10.1529/biophysj.105.064154
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
New methods to automatically build models of macromolecular complexes from high- resolution structures or homology models of their subunits or domains against x- ray or neutron small- angle scattering data are presented. Depending on the complexity of the object, different approaches are employed for the global search of the optimum configuration of subunits fitting the experimental data. An exhaustive grid search is used for hetero- and homodimeric particles and for symmetric oligomers formed by identical subunits. For the assemblies or multidomain proteins containing more then one subunit/ domain per asymmetric unit, heuristic algorithms based on simulated annealing are used. Fast computational algorithms based on spherical harmonics representation of scattering amplitudes are employed. The methods allow one to construct interconnected models without steric clashes, to account for the particle symmetry and to incorporate information from other methods, on distances between specific residues or nucleotides. For multidomain proteins, addition of missing linkers between the domains is possible. Simultaneous fitting of multiple scattering patterns from subcomplexes or deletion mutants is incorporated. The efficiency of the methods is illustrated by their application to complexes of different types in several simulated and practical examples. Limitations and possible ambiguity of rigid body modeling are discussed and simplified docking criteria are provided to rank multiple models. The methods described are implemented in publicly available computer programs running on major hardware platforms.
引用
收藏
页码:1237 / 1250
页数:14
相关论文
共 63 条
[11]   Docking unbound proteins using shape complementarity, desolvation, and electrostatics [J].
Chen, R ;
Weng, ZP .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2002, 47 (03) :281-294
[12]   Crystal structure of a functional unit from Octopus hemocyanin [J].
Cuff, ME ;
Miller, KI ;
van Holde, KE ;
Hendrickson, WA .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 278 (04) :855-870
[13]   Low-resolution structure of the proteolytic fragments of the Rapana venosa hemocyanin in solution [J].
Dainese, E ;
Svergun, D ;
Beltramini, M ;
Di Muro, P ;
Salvato, B .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2000, 373 (01) :154-162
[14]   The F0F1-type ATP synthases of bacteria: Structure and function of the F-0 complex [J].
DeckersHebestreit, G ;
Altendorf, K .
ANNUAL REVIEW OF MICROBIOLOGY, 1996, 50 :791-824
[15]  
DEPAUTEX C, 1987, D24 CNRS LURE
[16]   High resolution crystal structure of pyruvate decarboxylase from Zymomonas mobilis -: Implications for substrate activation in pyruvate decarboxylases [J].
Dobritzsch, D ;
König, S ;
Schneider, G ;
Lu, GG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (32) :20196-20204
[17]   Filtering and selection of structural models: Combining docking and NMR [J].
Dobrodumov, A ;
Gronenborn, AM .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2003, 53 (01) :18-32
[18]   HADDOCK: A protein-protein docking approach based on biochemical or biophysical information [J].
Dominguez, C ;
Boelens, R ;
Bonvin, AMJJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (07) :1731-1737
[19]   ATP synthase: A tentative structural model [J].
Engelbrecht, S ;
Junge, W .
FEBS LETTERS, 1997, 414 (03) :485-491
[20]  
Feigin L., 1987, STRUCTURE ANAL SMALL