Let E be an elliptic curve over a number field K which admits a cyclic p-isogeny with p >= 3 and semistable at primes above p. We determine the root number and the parity of the p-Selmer rank for E/K, in particular confirming the parity conjecture for such curves. We prove the analogous results for p = 2 under the additional assumption that E is not supersingular at primes above 2. (c) 2007 Elsevier Inc. All rights reserved.
机构:
Univ Cambridge, Ctr Math Sci, Dept Pure Math & Math Stat, Cambridge CB3 0WB, EnglandUniv Cambridge, Ctr Math Sci, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
机构:
Univ Cambridge, Ctr Math Sci, Dept Pure Math & Math Stat, Cambridge CB3 0WB, EnglandUniv Cambridge, Ctr Math Sci, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England