Parity of ranks for elliptic curves with a cyclic isogeny

被引:24
作者
Dokchitser, Tim [1 ]
Dokchitser, Vladimir [2 ]
机构
[1] Robinson Coll, Cambridge CB3 9AN, England
[2] Max Planck Inst Math, D-53111 Bonn, Germany
关键词
parity conjecture; elliptic curves; selmer rank; root numbers;
D O I
10.1016/j.jnt.2007.02.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be an elliptic curve over a number field K which admits a cyclic p-isogeny with p >= 3 and semistable at primes above p. We determine the root number and the parity of the p-Selmer rank for E/K, in particular confirming the parity conjecture for such curves. We prove the analogous results for p = 2 under the additional assumption that E is not supersingular at primes above 2. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:662 / 679
页数:18
相关论文
共 15 条