A Collocation Method for Volterra Integral Equations

被引:0
作者
Kolk, Marek [1 ]
机构
[1] Univ Tartu, Inst Math, EE-50409 Tartu, Estonia
来源
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III | 2010年 / 1281卷
关键词
Volterra integral equation; weakly singular kernel; boundary singularity; collocation method; logarithmic kernel; PIECEWISE POLYNOMIAL COLLOCATION; SINGULARITIES;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a piecewise polynomial collocation method for solving linear Volterra integral equations of the second kind with logarithmic kernels which, in addition to a diagonal singularity, may have a singularity at the initial point of the interval of integration. An attainable order of the convergence of the method is studied. We illustrate our results with a numerical example.
引用
收藏
页码:1187 / 1190
页数:4
相关论文
共 8 条
[1]   The piecewise polynomial collocation method for nonlinear weakly singular Volterra equations [J].
Brunner, H ;
Pedas, A ;
Vainikko, G .
MATHEMATICS OF COMPUTATION, 1999, 68 (227) :1079-1095
[2]  
BRUNNER H, 1986, CWI MONOGRAPHS, V3
[3]  
Brunner H., 2004, Cambridge Monographs on Applied and Computational Mathematics, V15
[4]   Numerical Solution of Volterra Integral Equations with Weakly Singular Kernels which May Have a Boundary Singularity [J].
Kolk, M. ;
Pedas, A. .
MATHEMATICAL MODELLING AND ANALYSIS, 2009, 14 (01) :79-89
[5]   High-Order Methods for Volterra Integral Equations with General Weak Singularities [J].
Kolk, Marek ;
Pedas, Arvet ;
Vainikko, Gennadi .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2009, 30 (9-10) :1002-1024
[6]   Smoothing transformation and piecewise polynomial collocation for weakly singular volterra integral equations [J].
Pedas, A ;
Vainikko, G .
COMPUTING, 2004, 73 (03) :271-293
[7]  
Pedas A, 2006, Z ANAL ANWEND, V25, P487
[8]  
Vainikko G., 1993, MULTIDIMENSIONAL WEA