Data underlie understanding of processes and prediction of the future. However, things change; data from one population at one time may have uncertain relevance for modeling or prediction in another population or at another time. Data-based prediction in a changing world requires two complementary capabilities: versatile modeling, integrated with management of uncertainty. We develop a response to this challenge. We focus on statistical models of bounded random variables, associated with additional non-probabilistic uncertainties. We employ CDF-quantile distributions to model the probabilistic aspects of these phenomena. Non-probabilistic uncertainties in parameter values and in the shapes of probability distributions are modeled and managed with the method of robust satisficing from info-gap theory. The robustness to uncertainty is evaluated for alternative estimators. We show that putatively optimal estimators may be less robust than sub-optimal estimators, suggesting preference for a sub-optimal estimator in some circumstances. These two attributes-statistical accuracy and info-gap robustness-trade off against one another. The info-gap robustness function quantifies this trade off. Generic propositions specify the robustness functions and their trade offs, and characterize a class of situations in which preference for sub-optimal estimators can occur. Three examples are discussed. (C) 2018 Elsevier Inc. All rights reserved.
机构:
Technion Israel Inst Technol, Fac Architecture & Town Planning, Haifa, IsraelTechnion Israel Inst Technol, Fac Architecture & Town Planning, Haifa, Israel
Broitman, Dani
Ben -Haim, Yakov
论文数: 0引用数: 0
h-index: 0
机构:
Technion Israel Inst Technol, Yitzhak Modai Chair Technol & Econ, Haifa, IsraelTechnion Israel Inst Technol, Fac Architecture & Town Planning, Haifa, Israel