Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application

被引:116
|
作者
Singh, B. N. [1 ]
Panda, N. N. [1 ]
Mund, R. [1 ]
Pramanik, K. [1 ]
机构
[1] Natl Inst Technol, Dept Biotechnol & Med Engn, Rourkela, India
关键词
Silk fibroin; Electrospinning; Carboxymethyl cellulose; Calcium phosphate; Tissue engineered scaffold; COMPOSITE; MEMBRANE; RHEOLOGY; BIOCOMPATIBILITY; MINERALIZATION; CELLS; HEAVY; MAT; PH;
D O I
10.1016/j.carbpol.2016.05.088
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Novel silk fibroin (SF) and carboxymethyl cellulose (CMC) composite nanofibrous scaffold (SFC) were developed to investigate their ability to nucleate bioactive nanosized calcium phosphate (Ca/P) by biomineralization for bone tissue engineering application. The composite nanofibrous scaffold was prepared by free liquid surface electrospinning method. The developed composite nanofibrous scaffold was observed to control the size of Ca/P particle (<= 100 nm) as well as uniform nucleation of Ca/P over the surface. The obtained nanofibrous scaffolds were fully characterized for their functional, structural and mechanical property. The XRD and EDX analysis depicted the development of apatite like crystals over SFC scaffolds of nanospherical in morphology and distributed uniformly throughout the surface of scaffold. Additionally, hydrophilicity as a measure of contact angle and water uptake capacity is higher than pure SF scaffold representing the superior cell supporting property of the SF/CMC scaffold. The effect of biomimetic Ca/P on osteogenic differentiation of umbilical cord blood derived human mesenchymal stem cells (hMSCs) studied in early and late stage of differentiation shows the improved osteoblastic differentiation capability as compared to pure silk fibroin. The obtained result confirms the positive correlation of alkaline phosphatase activity, alizarin staining and expression of runt-related transcription factor 2, osteocalcin and typel collagen representing the biomimetic property of the scaffolds. Thus, the developed composite has been demonstrated to be a potential scaffold for bone tissue engineering application. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:335 / 347
页数:13
相关论文
共 50 条
  • [1] Generation of bioactive nano-composite scaffold of nanobioglass/silk fibroin/carboxymethyl cellulose for bone tissue engineering
    Singh, B. N.
    Pramanik, K.
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2018, 29 (16) : 2011 - 2034
  • [2] A graded graphene oxide-hydroxyapatite/silk fibroin biomimetic scaffold for bone tissue engineering
    Wang, Qian
    Chu, Yanyan
    He, Jianxin
    Shao, Weili
    Zhou, Yuman
    Qi, Kun
    Wang, Lidan
    Cui, Shizhong
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 80 : 232 - 242
  • [3] The potential of biomimetic nanofibrous electrospun scaffold comprising dual component for bone tissue engineering
    Jaganathan, Saravana Kumar
    Mani, Mohan Prasath
    Nageswaran, Gomathi
    Krishnasamy, Navaneetha Pandiyaraj
    Ayyar, Manikandan
    INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION, 2019, 24 (03) : 204 - 218
  • [4] Novel Blowspun Nanobioactive Glass Doped Polycaprolactone/Silk Fibroin Composite Nanofibrous Scaffold with Enhanced Osteogenic Property for Bone Tissue Engineering
    Agrawal, Parinita
    Pramanik, Krishna
    Bissoyi, Akalabya
    FIBERS AND POLYMERS, 2018, 19 (12) : 2465 - 2477
  • [5] In vitro and in vivo evaluation of silk fibroin-hardystonite-gentamicin nanofibrous scaffold for tissue engineering applications
    Hadisi, Zhina
    Bakhsheshi-Rad, Hamid Reza
    Walsh, Tavia
    Dehghan, Mohammad Mehdi
    Farzad-Mohajeri, Saeed
    Gholami, Hossein
    Diyanoush, Anahita
    Pagan, Erik
    Akbari, Mohsen
    POLYMER TESTING, 2020, 91
  • [6] Aloe Vera/Silk Fibroin/Hydroxyapatite Incorporated Electrospun Nanofibrous Scaffold for Enhanced Osteogenesis
    Suganya, S.
    Venugopa, J., I
    Ramakrishna, S.
    Lakshmi, B. S.
    Dev, V. R. Giri
    JOURNAL OF BIOMATERIALS AND TISSUE ENGINEERING, 2014, 4 (01) : 9 - 19
  • [7] Silk Fibroin-Based Scaffold for Bone Tissue Engineering
    Choi, Joo Hee
    Kim, Do Kyung
    Song, Jeong Eun
    Oliveira, Joaquim Miguel
    Reis, Rui Luis
    Khang, Gilson
    NOVEL BIOMATERIALS FOR REGENERATIVE MEDICINE, 2018, 1077 : 371 - 387
  • [8] Study of the electrospun PLA/silk fibroin-gelatin composite nanofibrous scaffold for tissue engineering
    Gui-Bo, Yin
    You-Zhu, Zhang
    Shu-Dong, Wang
    De-Bing, Shi
    Zhi-Hui, Dong
    Wei-Guo, Fu
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2010, 93A (01) : 158 - 163
  • [9] Electrospun Poly(lactic acid) and Silk Fibroin Based Nanofibrous Scaffold for Meniscus Tissue Engineering
    Promnil, Siripanyo
    Ruksakulpiwat, Chaiwat
    Numpaisal, Piya-on
    Ruksakulpiwat, Yupaporn
    POLYMERS, 2022, 14 (12)
  • [10] Novel Blowspun Nanobioactive Glass Doped Polycaprolactone/Silk Fibroin Composite Nanofibrous Scaffold with Enhanced Osteogenic Property for Bone Tissue Engineering
    Parinita Agrawal
    Krishna Pramanik
    Akalabya Bissoyi
    Fibers and Polymers, 2018, 19 : 2465 - 2477