Quantization of a self-dual conformal theory in (2+1) dimensions

被引:2
|
作者
Andreucci, Francesco [1 ,2 ]
Cappelli, Andrea [3 ]
Maffi, Lorenzo [1 ,3 ]
机构
[1] Univ Firenze, Dipartimento Fis, Via G Sansone 1, I-50019 Florence, Italy
[2] SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[3] INFN, Sez Firenze, Via G Sansone 1, I-50019 Florence, Italy
关键词
Topological States of Matter; Conformal Field Theory; Duality in Gauge Field Theories; Field Theories in Lower Dimensions; GAUGE-THEORY;
D O I
10.1007/JHEP02(2020)116
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Compact nonlocal Abelian gauge theory in (2 + 1) dimensions, also known as loop model, is a massless theory with a critical line that is explicitly covariant under duality transformations. It corresponds to the large N-F limit of self-dual electrodynamics in mixed three-four dimensions. It also provides a bosonic description for surface excitations of three-dimensional topological insulators. Upon mapping the model to a local gauge theory in (3 + 1) dimensions, we compute the spectrum of electric and magnetic solitonic excitations and the partition function on the three torus T3. Analogous results for the S-2 x S-1 geometry show that the theory is conformal invariant and determine the manifestly self-dual spectrum of conformal fields, corresponding to order-disorder excitations with fractional statistics.
引用
收藏
页数:35
相关论文
共 50 条
  • [41] DUAL VARIABLES FOR FERMIONS IN 2+1 DIMENSIONS
    MARINO, EC
    RUIZ, JES
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (01): : 171 - 176
  • [42] QUANTIZATION OF SELF-DUAL FIELDS WITH 2ND-ORDER DERIVATIVES
    MAIO, YG
    LI, SM
    LIU, YY
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1993, 19 (03) : L33 - L37
  • [43] Boundary conformal field theory and symmetry-protected topological phases in 2+1 dimensions
    Han, Bo
    Tiwari, Apoorv
    Hsieh, Chang-Tse
    Ryu, Shinsei
    PHYSICAL REVIEW B, 2017, 96 (12)
  • [44] Uniqueness of the Fock quantization of Dirac fields in 2+1 dimensions
    Cortez, Jeronimo
    Elizaga Navascues, Beatriz
    Martin-Benito, Mercedes
    Mena Marugan, Guillermo A.
    Velhinho, Jose M.
    PHYSICAL REVIEW D, 2017, 96 (02)
  • [45] General analysis of self-dual solutions for the Einstein-Maxwell-Chern-Simons theory in (1+2) dimensions
    Dereli, T
    Obukhov, YN
    PHYSICAL REVIEW D, 2000, 62 (02):
  • [46] QUANTIZATION OF A CHARGE MAGNETIC DIPOLE MODEL IN 2+1 DIMENSIONS
    MAINLAND, GB
    SCOTT, DM
    LETTERE AL NUOVO CIMENTO, 1982, 35 (13): : 401 - 404
  • [47] CANONICAL QUANTIZATION OF GRAVITATING POINT PARTICLES IN 2+1 DIMENSIONS
    TENHOOFT, G
    CLASSICAL AND QUANTUM GRAVITY, 1993, 10 (08) : 1653 - 1664
  • [48] Turbulent flows for relativistic conformal fluids in 2+1 dimensions
    Carrasco, Federico
    Lehner, Luis
    Myers, Robert C.
    Reula, Oscar
    Singh, Ajay
    PHYSICAL REVIEW D, 2012, 86 (12)
  • [49] Affine extension of Galilean conformal algebra in 2+1 dimensions
    Hosseiny, Ali
    Rouhani, Shahin
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (05)
  • [50] Higher order self-dual models for spin-3 particles in D=2+1
    Dalmazi, D.
    dos Santos, A. L. R.
    Lino dos Santos, R. R.
    PHYSICAL REVIEW D, 2018, 98 (10)