In-situ construction of dual lithium-ion migration channels in polymer electrolytes for lithium metal batteries

被引:27
|
作者
Hu, Anyi [1 ]
Liao, Zhu [1 ]
Huang, Jun [1 ]
Zhang, Yun [1 ]
Yang, Qirui [1 ]
Zhang, Zhengxi [1 ,2 ]
Yang, Li [1 ,2 ,3 ]
Hirano, Shin-ichi [3 ]
机构
[1] Shanghai Jiao Tong Univ, Frontiers Sci Ctr Transformat Mol, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[2] Shanghai Electrochem Energy Devices Res Ctr, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Hirano Inst Mat Innovat, Shanghai 200240, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Solid polymer electrolytes; In situ; Dual lithium-ion migration channels; Dendrite-free; Wide operating temperature; SOLID ELECTROLYTES; CONDUCTIVITY; ANODE; SAFE; TRANSPORT;
D O I
10.1016/j.cej.2022.137661
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Solid polymer electrolytes (SPEs) are expected to play an important role in high-energy lithium metal batteries (LMBs). Unfortunately, SPEs suffer from inadequate room-temperature ionic conductivity and sluggish interfacial charge transport, which severely limit their widespread applications in LMBs. Herein, we in-situ construct dual lithium-ion migration channels based SPEs by combining ring-opening polymerization of 1,3-dioxolane and solid-state organic ionic plastic crystals. Coordination-dissociation with the oxygen atoms in polymer chain segments and fast ion migration inside the organic ionic plastic crystal are two migration modes formed in-situ to synergistically enhance the ionic conductivity and interfacial charge transfer of SPEs. As a result, the in-situ formed poly(1,3-dioxolane)-based solid electrolytes (PDEs) not only afford an integrated battery structure with stabilized electrodes/electrolyte interface but also achieve outstanding oxidation stability, uniform lithium deposition (greater than1200 h under 0.5 mAh cm(-2) in symmetric Li cells). Based on PDEs, the Li-LiFePO4 batteries demonstrate excellent cycle stability (almost no capacity decay after 500 cycles under 2C at 25 degrees C) and a wide operating temperature (-15 similar to 45 degrees C). Also, applications of PDEs in Li-LiNi0.6Mn0.2Co0.2O2 batteries further demonstrate the compatibility of PDE with high voltage battery systems. Our study provides a facile and practical approach for creating solid electrolytes that meet both the ionic conductivity and interfacial charge transport requirements for practical solid-state batteries.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Enhanced Lithium-Ion Transport in Polyphosphazene based Gel Polymer Electrolytes
    Jankowski, S.
    Hiller, Martin M.
    Fromm, O.
    Winter, M.
    Wiemhoefer, H. -D.
    ELECTROCHIMICA ACTA, 2015, 155 : 364 - 371
  • [32] Copolymers of trimethylene carbonate and ε-caprolactone as electrolytes for lithium-ion batteries
    Mindemark, Jonas
    Torma, Erik
    Sun, Bing
    Brandell, Daniel
    POLYMER, 2015, 63 : 91 - 98
  • [33] Immobilized cation functional gel polymer electrolytes with high lithium transference number for lithium ion batteries
    Tsao, Chih-Hao
    Su, Hou-Ming
    Huang, Hsiang-Ting
    Kuo, Ping-Lin
    Teng, Hsisheng
    JOURNAL OF MEMBRANE SCIENCE, 2019, 572 : 382 - 389
  • [34] In-situ crosslinked single ion gel polymer electrolyte with superior performances for lithium metal batteries
    Guan, Xiang
    Wu, Qingping
    Zhang, Xiaowan
    Guo, Xuhong
    Li, Chilin
    Xu, Jun
    CHEMICAL ENGINEERING JOURNAL, 2020, 382
  • [35] In situ Synthesis of Gel Polymer Electrolytes for Lithium Batteries
    Cheng, Xiangran
    Jiang, Yi
    Lu, Chenhao
    Li, Jiaxin
    Qu, Jiahe
    Wang, Bingjie
    Peng, Huisheng
    BATTERIES & SUPERCAPS, 2023, 6 (06)
  • [36] Photocured Cationic Polyoxazoline Macromonomers as Gel Polymer Electrolytes for Lithium-Ion Batteries
    Drews, Mathias
    Troetschler, Tobias
    Bauer, Manuel
    Guntupalli, Apurupa
    Beichel, Witali
    Gentischer, Harald
    Muelhaupt, Rolf
    Kerscher, Benjamin
    Biro, Daniel
    ACS APPLIED POLYMER MATERIALS, 2022, 4 (01) : 158 - 168
  • [37] In Situ Polymerized Zwitterionic Copolymer Ionic Gel Electrolytes with High Performance for Lithium-Ion Batteries
    Chen, Wenting
    Hai, Feng
    Gao, Xin
    Guo, Jingyu
    Yi, Yikun
    Xue, Weicheng
    Tang, Wei
    Li, Mingtao
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (28) : 36696 - 36704
  • [38] Poly(β-amino ester) based solid polymer electrolytes for lithium-ion batteries
    Majumdar Svensson, Orpita
    Melander Bowden, Tim
    JOURNAL OF APPLIED POLYMER SCIENCE, 2024, 141 (15)
  • [39] The Impact of Polymer Electrolyte Properties on Lithium-Ion Batteries
    Badi, Nacer
    Theodore, Azemtsop Manfo
    Alghamdi, Saleh A.
    Al-Aoh, Hatem A.
    Lakhouit, Abderrahim
    Singh, Pramod K.
    Norrrahim, Mohd Nor Faiz
    Nath, Gaurav
    POLYMERS, 2022, 14 (15)
  • [40] Designing polymer electrolytes for advanced solid lithium-ion batteries: recent advances and future perspectives
    Lu, Tiantian
    Guan, Lixiang
    Zhan, Qi
    Liang, ZiYang
    Liu, Chang
    Hou, Lifeng
    Du, Huayun
    Wei, Yinghui
    Wang, Shi
    Wang, Qian
    MATERIALS CHEMISTRY FRONTIERS, 2023, 7 (18) : 3937 - 3957