In-situ construction of dual lithium-ion migration channels in polymer electrolytes for lithium metal batteries

被引:27
|
作者
Hu, Anyi [1 ]
Liao, Zhu [1 ]
Huang, Jun [1 ]
Zhang, Yun [1 ]
Yang, Qirui [1 ]
Zhang, Zhengxi [1 ,2 ]
Yang, Li [1 ,2 ,3 ]
Hirano, Shin-ichi [3 ]
机构
[1] Shanghai Jiao Tong Univ, Frontiers Sci Ctr Transformat Mol, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[2] Shanghai Electrochem Energy Devices Res Ctr, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Hirano Inst Mat Innovat, Shanghai 200240, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Solid polymer electrolytes; In situ; Dual lithium-ion migration channels; Dendrite-free; Wide operating temperature; SOLID ELECTROLYTES; CONDUCTIVITY; ANODE; SAFE; TRANSPORT;
D O I
10.1016/j.cej.2022.137661
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Solid polymer electrolytes (SPEs) are expected to play an important role in high-energy lithium metal batteries (LMBs). Unfortunately, SPEs suffer from inadequate room-temperature ionic conductivity and sluggish interfacial charge transport, which severely limit their widespread applications in LMBs. Herein, we in-situ construct dual lithium-ion migration channels based SPEs by combining ring-opening polymerization of 1,3-dioxolane and solid-state organic ionic plastic crystals. Coordination-dissociation with the oxygen atoms in polymer chain segments and fast ion migration inside the organic ionic plastic crystal are two migration modes formed in-situ to synergistically enhance the ionic conductivity and interfacial charge transfer of SPEs. As a result, the in-situ formed poly(1,3-dioxolane)-based solid electrolytes (PDEs) not only afford an integrated battery structure with stabilized electrodes/electrolyte interface but also achieve outstanding oxidation stability, uniform lithium deposition (greater than1200 h under 0.5 mAh cm(-2) in symmetric Li cells). Based on PDEs, the Li-LiFePO4 batteries demonstrate excellent cycle stability (almost no capacity decay after 500 cycles under 2C at 25 degrees C) and a wide operating temperature (-15 similar to 45 degrees C). Also, applications of PDEs in Li-LiNi0.6Mn0.2Co0.2O2 batteries further demonstrate the compatibility of PDE with high voltage battery systems. Our study provides a facile and practical approach for creating solid electrolytes that meet both the ionic conductivity and interfacial charge transport requirements for practical solid-state batteries.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Applications of Polymer Electrolytes in Lithium-Ion Batteries: A Review
    Chattopadhyay, Jayeeta
    Pathak, Tara Sankar
    Santos, Diogo M. F.
    POLYMERS, 2023, 15 (19)
  • [2] Nanostructured Polymer Electrolytes for Lithium-Ion Batteries
    Yoon, Jeong Hoon
    Cho, Won-Jang
    Kang, Tae hui
    Lee, Minjae
    Yi, Gi-Ra
    MACROMOLECULAR RESEARCH, 2021, 29 (08) : 509 - 518
  • [3] Polymer-in-salt solid electrolytes for lithium-ion batteries
    Yi, Chengjun
    Liu, Wenyi
    Li, Linpo
    Dong, Haoyang
    Liu, Jinping
    FUNCTIONAL MATERIALS LETTERS, 2019, 12 (06)
  • [4] Solid-State Polymer Electrolytes for Lithium-Ion Batteries
    Karpushkin, E. A.
    Lopatina, L. I.
    Drozhzhin, O. A.
    Sergeyev, V. G.
    MOSCOW UNIVERSITY CHEMISTRY BULLETIN, 2024, 79 (06) : 420 - 428
  • [5] A Brief Review of Gel Polymer Electrolytes Using In Situ Polymerization for Lithium-ion Polymer Batteries
    Chae, Wookil
    Kim, Bumsang
    Ryoo, Won Sun
    Earmme, Taeshik
    POLYMERS, 2023, 15 (04)
  • [6] Polymer Electrolytes for Lithium-Ion Batteries Studied by NMR Techniques
    Volkov, Vitaly I.
    Yarmolenko, Olga V.
    Chernyak, Alexander V.
    Slesarenko, Nikita A.
    Avilova, Irina A.
    Baymuratova, Guzaliya R.
    Yudina, Alena V.
    MEMBRANES, 2022, 12 (04)
  • [7] Nanocomposite polymer electrolytes prepared by in situ polymerization on the surface of nanoparticles for lithium-ion polymer batteries
    Zhou, Ji
    Gao, Deshu
    Li, Zhaohui
    Lei, Gangtie
    Zhao, Tiepeng
    Yi, Xiaohua
    PURE AND APPLIED CHEMISTRY, 2010, 82 (11) : 2167 - 2174
  • [8] Water Domain Enabled Transport in Polymer Electrolytes for Lithium-Ion Batteries
    Widstrom, Matthew D.
    Borodin, Oleg
    Ludwig, Kyle B.
    Matthews, Jesse E.
    Bhattacharyya, Sahana
    Garaga, Mounesha
    Cresce, Arthur, V
    Jarry, Angelique
    Erdi, Metecan
    Wang, Chunsheng
    Greenbaum, Steven
    Kofinas, Peter
    MACROMOLECULES, 2021, 54 (06) : 2882 - 2891
  • [9] In Situ Preparation of Crosslinked Polymer Electrolytes for Lithium Ion Batteries: A Comparison of Monomer Systems
    Roechow, Eike T.
    Coeler, Matthias
    Pospiech, Doris
    Kobsch, Oliver
    Mechtaeva, Elizaveta
    Vogel, Roland
    Voit, Brigitte
    Nikolowski, Kristian
    Wolter, Mareike
    POLYMERS, 2020, 12 (08)
  • [10] Solid-state rigid polymer composite electrolytes with in-situ formed nano-crystalline lithium ion pathways for lithium-metal batteries
    Wei, Zhuangzhuang
    Huang, Jun
    Liao, Zhu
    Hu, Anyi
    Zhang, Zhengxi
    Orita, Akihiro
    Saito, Nagahiro
    Yang, Li
    ENERGY STORAGE MATERIALS, 2024, 72