Image Segmentation of Rectal Tumor Based on Improved U-Net Model with Deep Learning

被引:1
|
作者
Zhou, Faguo [1 ]
Ye, Yuansheng [1 ]
Song, Yanan [1 ]
机构
[1] China Univ Min & Technol, Sch Mech Elect & Informat Engn, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Rectal tumor segmentation; Fuzzy logic; Attention mechanism; U-Net Model; Loop-back residual network; EDGE; ALGORITHM;
D O I
10.1007/s11265-021-01710-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Rectal tumor is a common malignancy in the intestine. The death rate of rectal tumor ranks fourth among the malignant tumors of digestive system, which seriously threaten the life and health of patients. Endoscopic ultrasonography is the most commonly used method to detect rectal tumors. After obtaining CT images, doctors diagnose the condition with the naked eye and experience, which brings a certain workload to both the doctor and the patient. With the development of in-depth learning and the continuous iterative convolution neural network, more and more techniques have been applied in the field of medical image. Therefore, this paper studies and improves an ultrasonic image segmentation U-Net model for rectal tumors based on fuzzy logic attention mechanism. This paper first preprocesses the original image, enhances the details and reduces the image size.Then the image feature map is weighted by fuzzy logic and attention mechanism. In addition, the loop-back residual mechanism is used to optimize the model. At last, the results of several models are analyzed and compared. The results show that, compared with the U-Net model, the optimized model has a nearly 3% increase in image segmentation precision, almost unchanged recall, and both IoU and Dice have increased by about 2%. Overall, the model has good segmentation performance, and the introduction of RoI aware U-Net greatly reduces the use of video memory.
引用
收藏
页码:1145 / 1157
页数:13
相关论文
共 50 条
  • [31] Deep Learning Model Development with U-net Architecture for Glottis Segmentation
    Derdiman, Yasar Said
    Koc, Turgay
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [32] CT images segmentation method of rectal tumor based on modified U-net
    Zheng, Biao
    Cai, Chenxiao
    Ma, Lei
    16TH IEEE INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV 2020), 2020, : 672 - 677
  • [33] MSR U-Net: An Improved U-Net Model for Retinal Blood Vessel Segmentation
    Kande, Giri Babu
    Ravi, Logesh
    Kande, Nitya
    Nalluri, Madhusudana Rao
    Kotb, Hossam
    Aboras, Kareem M.
    Yousef, Amr
    Ghadi, Yazeed Yasin
    Sasikumar, A.
    IEEE ACCESS, 2024, 12 : 534 - 551
  • [34] MSR U-Net: An Improved U-Net Model for Retinal Blood Vessel Segmentation
    Kande, Giri Babu
    Ravi, Logesh
    Kande, Nitya
    Nalluri, Madhusudana Rao
    Kotb, Hossam
    Aboras, Kareem M.
    Yousef, Amr
    Ghadi, Yazeed Yasin
    Sasikumar, A.
    IEEE Access, 2024, 12 : 534 - 551
  • [36] Rock CT Image Segmentation Based on Transfer Learning and U-Net
    Shan, Liqun
    Wang, Yulin
    Ren, Hongwei
    Liu, Yanchang
    Liu, Chengqian
    Zhang, Xiaorou
    Wang, Xiangyu
    2024 5TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATION, ICCEA 2024, 2024, : 1057 - 1061
  • [37] Bladder Wall Segmentation using U-Net based Deep Learning
    Ivanitskiy, Michael
    Hadjiiski, Lubomir
    Chan, Heang-Ping
    Samala, Ravi
    Cohan, Richard H.
    Caoili, Elaine M.
    Weizer, Alon
    Alva, Ajjai
    Wei, Jun
    Zhou, Chuan
    MEDICAL IMAGING 2020: COMPUTER-AIDED DIAGNOSIS, 2020, 11314
  • [38] U-Net based deep learning bladder segmentation in CT urography
    Ma, Xiangyuan
    Hadjiiski, Lubomir M.
    Wei, Jun
    Chan, Heang-Ping
    Cha, Kenny H.
    Cohan, Richard H.
    Caoili, Elaine M.
    Samala, Ravi
    Zhou, Chuan
    Lu, Yao
    MEDICAL PHYSICS, 2019, 46 (04) : 1752 - 1765
  • [39] M-region Segmentation of Pharyngeal Swab Image Based on Improved U-Net Model
    Wang, Yina
    Xu, Zechao
    Zhao, Huaici
    Yang, Junyou
    Wang, Shuoyu
    2021 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENCE AND SAFETY FOR ROBOTICS (ISR), 2021, : 186 - 190
  • [40] An Improved U-Net Model for Infrared Image Segmentation of Wind Turbine Blade
    Yu, Junfeng
    He, Yunze
    Liu, Hao
    Zhang, Fan
    Li, Jie
    Sun, Gaosen
    Zhang, Xiaofei
    Yang, Ruizhen
    Wang, Pan
    Wang, Hongjin
    IEEE SENSORS JOURNAL, 2023, 23 (02) : 1318 - 1327