Molecular Mechanisms of Microbial Extracellular Electron Transfer: The Importance of Multiheme Cytochromes

被引:31
作者
Paquete, Catarina M. [1 ]
Morgado, Leonor [2 ,3 ]
Salgueiro, Carlos A. [2 ,3 ]
Louro, Ricardo O. [1 ]
机构
[1] NOVA Univ Lisbon, Inst Chem & Biol Technol Antonio Xavier ITQB NOVA, P-2780157 Oeiras, Portugal
[2] NOVA Univ Lisbon, NOVA Sch Sci & Technol, Associate Lab, I4HB Inst Hlth & Bioecon, P-2829516 Caparica, Portugal
[3] NOVA Univ Lisbon, NOVA Sch Sci & Technol, Chem Dept, UCIBIO Appl Mol Biosci Unit, P-2829516 Caparica, Portugal
来源
FRONTIERS IN BIOSCIENCE-LANDMARK | 2022年 / 27卷 / 06期
关键词
extracellular electron transfer; bioelectrochemical systems; biogeochemical cycling of elements; electroactive organisms; reduction potential; iron; multiheme cytochromes; C-TYPE CYTOCHROMES; GEOBACTER-SULFURREDUCENS; SHEWANELLA-ONEIDENSIS; MEMBRANE CYTOCHROME; PERIPLASMIC CYTOCHROMES; TETRAHEME CYTOCHROME; CRYSTAL-STRUCTURE; TRANSFER PATHWAYS; METAL REDUCTION; PROTEIN COMPLEX;
D O I
10.31083/j.fbl2706174
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Extracellular electron transfer is a key metabolic process of many organisms that enables them to exchange electrons with extracellular electron donors/acceptors. The discovery of organisms with these abilities and the understanding of their electron transfer processes has become a priority for the scientific and industrial community, given the growing interest on the use of these organisms in sustainable biotechnological processes. For example, in bioelectrochemical systems electrochemical active organisms can exchange electrons with an electrode, allowing the production of energy and added-value compounds, among other processes. In these systems, electrochemical active organisms exchange electrons with an electrode through direct or indirect mechanisms, using, in most cases, multiheme cytochromes. In numerous electroactive organisms, these proteins form a conductive pathway that allows electrons produced from cellular metabolism to be transferred across the cell surface for the reduction of an electrode, or vice-versa. Here, the mechanisms by which the most promising electroactive bacteria perform extracellular electron transfer will be reviewed, emphasizing the proteins involved in these pathways. The ability of some of the organisms to perform bidirectional electron transfer and the pathways used will also be highlighted.
引用
收藏
页数:16
相关论文
共 50 条
[41]   Microbial extracellular electron transfer: A promising strategy for heavy metal removal mechanisms, regulation and future development [J].
Xi, Hui ;
Liu, Bo ;
Li, Xilin ;
Long, Xizi ;
Sun, Yingying ;
Wang, Wendong ;
Wang, Hui .
JOURNAL OF WATER PROCESS ENGINEERING, 2025, 71
[42]   Bespoke Biomolecular Wires for Transmembrane Electron Transfer: Spontaneous Assembly of a Functionalized Multiheme Electron Conduit [J].
Piper, Samuel E. H. ;
Edwards, Marcus J. ;
van Wonderen, Jessica H. ;
Casadevall, Carla ;
Martel, Anne ;
Jeuken, Lars J. C. ;
Reisner, Erwin ;
Clarke, Thomas A. ;
Butt, Julea N. .
FRONTIERS IN MICROBIOLOGY, 2021, 12
[43]   Modeling biofilms with dual extracellular electron transfer mechanisms [J].
Renslow, Ryan ;
Babauta, Jerome ;
Kuprat, Andrew ;
Schenk, Jim ;
Ivory, Cornelius ;
Fredrickson, Jim ;
Beyenal, Haluk .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (44) :19262-19283
[44]   Extracellular electron transfer through visible light induced excited-state outer membrane C-type cytochromes of Geobacter sulfurreducens [J].
Zhang, Bo ;
Cheng, Hao-Yi ;
Wang, Aijie .
BIOELECTROCHEMISTRY, 2021, 138
[45]   Independently evolved extracellular electron transfer pathways in ecologically diverse Desulfobacterota [J].
Shaw, Dario R. ;
Katuri, Krishna P. ;
Sapireddy, Veerraghavulu ;
Douvropoulou, Olga ;
Gralnick, Jeffrey A. ;
Saikaly, Pascal E. .
ISME JOURNAL, 2025, 19 (01)
[46]   Exoelectrogens: Recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications [J].
Kumar, Ravinder ;
Singh, Lakhveer ;
Zularisam, A. W. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 56 :1322-1336
[47]   Comparative metatranscriptomics reveals extracellular electron transfer pathways conferring microbial adaptivity to surface redox potential changes [J].
Ishii, Shun'ichi ;
Suzuki, Shino ;
Tenney, Aaron ;
Nealson, Kenneth H. ;
Bretschger, Orianna .
ISME JOURNAL, 2018, 12 (12) :2844-2863
[48]   Trace heavy metal ions promoted extracellular electron transfer and power generation by Shewanella in microbial fuel cells [J].
Xu, Yu-Shang ;
Zheng, Tao ;
Yong, Xiao-Yu ;
Zhai, Dan-Dan ;
Si, Rong-Wei ;
Li, Bing ;
Yu, Yang-Yang ;
Yong, Yang-Chun .
BIORESOURCE TECHNOLOGY, 2016, 211 :542-547
[49]   Mechanisms and Applications of Electron Shuttle-Mediated Extracellular Electron Transfer [J].
Ma Jinlian ;
Ma Chen ;
Tang Jia ;
Zhou Shungui ;
Zhuang Li .
PROGRESS IN CHEMISTRY, 2015, 27 (12) :1833-1840
[50]   Contribution of direct electron transfer mechanisms to overall electron transfer in microbial fuel cells utilising Shewanella oneidensis as biocatalyst [J].
Fapetu, Segun ;
Keshavarz, Taj ;
Clements, Mark ;
Kyazze, Godfrey .
BIOTECHNOLOGY LETTERS, 2016, 38 (09) :1465-1473