Gelatin-polysaccharide composite scaffolds for 3D cell culture and tissue engineering: Towards natural therapeutics

被引:275
|
作者
Afewerki, Samson [1 ,2 ]
Sheikhi, Amir [1 ,2 ,3 ,4 ,5 ]
Kannan, Soundarapandian [1 ,2 ,6 ]
Ahadian, Samad [3 ,4 ,5 ]
Khademhosseini, Ali [1 ,2 ,3 ,4 ,5 ,7 ,8 ,9 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dept Med, Biomat Innovat Res Ctr,Div Biomed Engn, Cambridge, MA 02142 USA
[2] MIT, Harvard Mit Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[3] Univ Calif Los Angeles, C MIT, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Calif NanoSyst Inst CNSI, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
[6] Periyar Univ, Dept Zool, Nanomed Div, Salem, Tamil Nadu, India
[7] Univ Calif Los Angeles, David Geffen Sch Med, Dept Radiol Sci, Los Angeles, CA 90095 USA
[8] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA
[9] Konkuk Univ, Coll Anim Biosci & Technol, Dept Bioind Technol, Seoul, South Korea
基金
加拿大健康研究院; 美国国家卫生研究院;
关键词
3D cell culture; gelatin; polysaccharides; scaffold; therapeutics; tissue engineering; CHITOSAN/GELATIN POROUS SCAFFOLDS; ROTATING WALL VESSEL; HYALURONIC-ACID; IN-VITRO; DRUG-DELIVERY; STEM-CELLS; BACTERIAL CELLULOSE; NANOFIBRILLAR CELLULOSE; CHONDROITIN SULFATE; MOLECULAR-WEIGHT;
D O I
10.1002/btm2.10124
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Gelatin is a promising material as scaffold with therapeutic and regenerative characteristics due to its chemical similarities to the extracellular matrix (ECM) in the native tissues, biocompatibility, biodegradability, low antigenicity, cost-effectiveness, abundance, and accessible functional groups that allow facile chemical modifications with other biomaterials or biomolecules. Despite the advantages of gelatin, poor mechanical properties, sensitivity to enzymatic degradation, high viscosity, and reduced solubility in concentrated aqueous media have limited its applications and encouraged the development of gelatin-based composite hydrogels. The drawbacks of gelatin may be surmounted by synergistically combining it with a wide range of polysaccharides. The addition of polysaccharides to gelatin is advantageous in mimicking the ECM, which largely contains proteoglycans or glycoproteins. Moreover, gelatin-polysaccharide biomaterials benefit from mechanical resilience, high stability, low thermal expansion, improved hydrophilicity, biocompatibility, antimicrobial and anti-inflammatory properties, and wound healing potential. Here, we discuss how combining gelatin and polysaccharides provides a promising approach for developing superior therapeutic biomaterials. We review gelatin-polysaccharides scaffolds and their applications in cell culture and tissue engineering, providing an outlook for the future of this family of biomaterials as advanced natural therapeutics.
引用
收藏
页码:96 / 115
页数:20
相关论文
共 50 条
  • [21] Advances in 3D Bioprinting of Scaffolds for Dental Tissue Engineering and Regeneration
    Chen, Senyao
    Sun, Jianwei
    Wu, Wenzhi
    Chen, Zhuo
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [22] 3D bioprinted alginate-gelatin based scaffolds for soft tissue engineering
    Chawla, Dipul
    Kaur, Tejinder
    Joshi, Akshay
    Singh, Neetu
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 144 (144) : 560 - 567
  • [23] Development of 3D PCL microsphere/TiO2 nanotube composite scaffolds for bone tissue engineering
    Khoshroo, Kimia
    Kashi, Tahereh S. Jafarzadeh
    Mortarzadeh, Fathollah
    Tahriri, Mohammadreza
    Jazayeri, Hossein E.
    Tayebi, Lobat
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 70 : 586 - 598
  • [24] Highly elastic 3D-printed gelatin/HA/placental-extract scaffolds for bone tissue engineering
    Lee, JiUn
    Kim, Dongyun
    Jang, Chul Ho
    Kim, Geun Hyung
    THERANOSTICS, 2022, 12 (09): : 4051 - 4066
  • [25] Composite Scaffolds Containing Silk Fibroin, Gelatin, and Hydroxyapatite for Bone Tissue Regeneration and 3D Cell Culturing
    Moisenovich, M. M.
    Arkhipova, A. Yu.
    Orlova, A. A.
    Drutskaya, M. S.
    Volkova, S. V.
    Zacharov, S. E.
    Agapov, I. I.
    Kirpichnikov, Academician M. P.
    ACTA NATURAE, 2014, 6 (01): : 96 - 101
  • [26] Production of Composite Scaffold Containing Silk Fibroin, Chitosan, and Gelatin for 3D Cell Culture and Bone Tissue Regeneration
    Li, Jianqing
    Wang, Qiuke
    Gu, Yebo
    Zhu, Yu
    Chen, Liang
    Chen, Yunfeng
    MEDICAL SCIENCE MONITOR, 2017, 23 : 5311 - 5320
  • [27] 3D polymer scaffolds for tissue engineering
    Seunarine, K.
    Gadegaard, N.
    Tormen, M.
    O Meredith, D.
    O Riehle, M.
    Wilkinson, C. D. W.
    NANOMEDICINE, 2006, 1 (03) : 281 - 296
  • [28] Application of 3D Scaffolds in Tissue Engineering
    Khoshnazar S.M.
    Asadi A.
    Roshancheshm S.
    Karimian A.
    Abdolmaleki A.
    Cell and Tissue Biology, 2023, 17 (5) : 454 - 464
  • [29] Towards Tissue Engineering: 3D Study of Polyamide-6 Scaffolds
    Mikhutkin A.A.
    Kamyshinsky R.A.
    Tenchurin T.K.
    Shepelev А.D.
    Orekhov A.S.
    Grigoriev T.E.
    Mamaguashvili V.G.
    Chvalun S.N.
    Vasiliev A.L.
    BioNanoScience, 2018, 8 (2) : 511 - 521
  • [30] 3D and 4D printing hydroxyapatite-based scaffolds for bone tissue engineering and regeneration
    Soleymani, Sina
    Naghib, Seyed Morteza
    HELIYON, 2023, 9 (09)