Adsorption of Pd on the Cu(111) surface and its catalysis of methane partial oxidation: A density functional theory study

被引:37
|
作者
Meng, Yuanyuan [1 ]
Ding, Chuanmin [1 ]
Gao, Xiaofeng [2 ]
Ma, Lichao [1 ]
Zhang, Kan [3 ]
Wang, Junwen [1 ]
Li, Zhe [1 ]
机构
[1] Taiyuan Univ Technol, Coll Chem & Chem Engn, Taiyuan 030024, Peoples R China
[2] Liaocheng Univ, Sch Chem & Chem Engn, Liaocheng 252000, Shandong, Peoples R China
[3] Chinese Acad Sci, Inst Coal Chem, Taiyuan 030001, Peoples R China
基金
中国博士后科学基金;
关键词
Single atom alloy catalysts; DFT simulation; Methane Partial Oxidation; D-Pd/Cu(111) catalyst; A-Pd/Cu(111) catalyst; SINGLE-ATOM ALLOYS; H BOND ACTIVATION; SELECTIVE HYDROGENATION; CH4; DISSOCIATION; NI; SYNGAS; DEHYDROGENATION; DECOMPOSITION; NANOPARTICLES; REDUCTION;
D O I
10.1016/j.apsusc.2020.145724
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The single atom alloy catalysts that Pd atoms alloy on Cu(1 1 1) surface has been extensively researched for catalytic partial oxidation of methane (CH4), however the current model mainly focuses on atomic substitution. Here, a new single atom alloy configuration of a Pd atom adsorbed on Cu (1 1 1) surface is proposed (A-Pd/Cu (1 1 1)). We systematically studied the partial oxidation of methane over a doped Pd/Cu(1 1 1) (D-Pd/Cu(1 1 1)) catalyst and over a adsorbed Pd/Cu(1 1 1) (A-Pd/Cu(1 1 1)) catalyst with the help of density functional theory (DFT) simulation. The results indicate that using oxygen as oxidant can reduce the activation energy barrier of CHx oxidation than hydroxy. The partial oxidation of methane process on the D-Pd/Cu(1 1 1) catalyst (CH4 -> CH3 -> CH3O -> CH2O -> CHO -> CO) was different to that on the A-Pd/Cu(1 1 1) catalyst (CH4 -> CH3 -> CH2 -> CH -> CHO -> CO). By comparison, we believe that CO is more likely generated on the catalyst of D-Pd/Cu(1 1 1) and it shows better performance in thermodynamics and has a higher capacity for sintering resistance.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Density functional theory study of the methanol adsorption and dissociation on CuO(111) surface
    Sun, Shujuan
    Wang, Yanji
    Yang, Qiusheng
    APPLIED SURFACE SCIENCE, 2014, 313 : 777 - 783
  • [42] Density functional theory study of the water adsorption at Bi(111) electrode surface
    Ivanistsev, Vladislav
    Nazmutdinov, Renat R.
    Lust, Enn
    SURFACE SCIENCE, 2010, 604 (21-22) : 1919 - 1927
  • [43] Adsorption of methanol and methoxy on Cu(111) surface: A first-principles periodic density functional theory study
    Chen Wen-Kai
    Liu Shu-Hong
    Cao Mei-Juan
    Lu Chun-Hai
    Xu Ying
    Yi Jun-Qian
    CHINESE JOURNAL OF CHEMISTRY, 2006, 24 (07) : 872 - 876
  • [44] Density functional theory study of furfural electrochemical oxidation on the Pt (111) surface
    Gong, Li
    Agrawal, Naveen
    Roman, Alex
    Holewinski, Adam
    Janik, Michael J.
    JOURNAL OF CATALYSIS, 2019, 373 : 322 - 335
  • [45] Initial oxidation of γ-TiAl(111) surface: Density-functional theory study
    Li, Hong
    Wang, Shaoqing
    Ye, Hengqiang
    Journal of Materials Science and Technology, 2009, 25 (04): : 569 - 576
  • [46] Initial Oxidation of γ-TiAl(111) Surface: Density-functional Theory Study
    Li, Hong
    Wang, Shaoqing
    Ye, Hengqiang
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2009, 25 (04) : 569 - 576
  • [48] Methanol oxidation on the PtPd(111) alloy surface: A density functional theory study
    Xu, Jing
    Guo, Sheng
    Hou, Fei
    Li, Jing
    Zhao, Lianming
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2018, 118 (03)
  • [49] A density functional theory study of carbon monoxide oxidation on the Cu3Pt(111) alloy surface:: Comparison with the reactions on Pt(111) and Cu(111)
    Zhang, CJ
    Baxter, RJ
    Hu, P
    Alavi, A
    Lee, MH
    JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (11): : 5272 - 5277
  • [50] Density functional theory and ab initio molecular dynamics study of NO adsorption on Pd(111) and Pt(111) surfaces
    Zeng, Zhen-Hua
    Da Silva, Juarez L. F.
    Li, Wei-Xue
    PHYSICAL REVIEW B, 2010, 81 (08):