Molecular characterization and functional analysis of a vacuolar Na+/H+ antiporter gene (HcNHX1) from Halostachys caspica

被引:60
作者
Guan, Bo [1 ]
Hu, Youzhen [1 ]
Zeng, Youling [1 ]
Wang, Yan [1 ]
Zhang, Fuchun [1 ]
机构
[1] Xinjiang Univ, Coll Life Sci & Technol, Xinjiang Key Lab Biol Resources & Genet Engn, Urumqi 830046, Peoples R China
关键词
Na+/H+ antiporter; Salt tolerance; Halostachys caspica; HcNHX1; Transgenic plant; WHEAT TRITICUM-AESTIVUM; ZEA-MAYS L; SALT TOLERANCE; ARABIDOPSIS-THALIANA; SALINITY TOLERANCE; EXPRESSION; CLONING; OVEREXPRESSION; RESISTANCE; HOMEOSTASIS;
D O I
10.1007/s11033-010-0307-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
According to sequences of several vacuolar Na+/H+ antiporter genes from Xinjiang halophytic plants, a new vacuolar Na+/H+ antiporter gene (HcNHX1) from the halophyte Halostachys caspica was obtained by RACE and RT-PCR using primers corresponding to conserved regions of the coding sequences. The obtained HcNHX1 cDNA was 1,983 bp and contained a 1,656 bp open reading frame encoding a deduced protein of 551 amino acid residues. The deduced amino acid sequence showed high identity with other NHX1 we have cloned previously from halophyte in Xinjiang desert area. The phylogenetic analysis showed that HcNHX1 formed a clade with NHX homologs of Chenopodiaceae. Expression profiles under salt treatment and ABA induction were investigated, and the results revealed that expression of HcNHX1 was induced by NaCl and ABA. To compare the degree of salt tolerance, we over-expressed HcNHX1 in Arabidopsis. Two transgenic lines grew more vigorously than the wild type (WT) under salt stress. The analysis of ion contents indicated that under salt stress, the transgenic plants compartmentalized more Na+ in the leaves compared with wild-type plants. Together, these results suggest that the products of the novel gene HcNHX1 from halophyte Halostachys caspica is a functional tonoplast Na+/H+ antiporter.
引用
收藏
页码:1889 / 1899
页数:11
相关论文
共 46 条
[1]   Molecular characterization of the Salicornia brachiata SbMAPKK gene and its expression by abiotic stress [J].
Agarwal, Pradeep K. ;
Gupta, Kapil ;
Jha, Bhavanath .
MOLECULAR BIOLOGY REPORTS, 2010, 37 (02) :981-986
[2]   Potassium/sodium steady-state homeostasis in Thellungiella halophila and Arabidopsis thaliana under long-term salinity conditions [J].
Aleman, Fernando ;
Nieves-Cordones, Manuel ;
Martinez, Vicente ;
Rubio, Francisco .
PLANT SCIENCE, 2009, 176 (06) :768-774
[3]   Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis [J].
Apse, MP ;
Aharon, GS ;
Snedden, WA ;
Blumwald, E .
SCIENCE, 1999, 285 (5431) :1256-1258
[4]   Sodium transport in plant cells [J].
Blumwald, E ;
Aharon, GS ;
Apse, MP .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2000, 1465 (1-2) :140-151
[5]   Na+/myo-inositol symporters and Na+/H+-antiport in Mesembryanthemum crystallinum [J].
Chauhan, S ;
Forsthoefel, N ;
Ran, YQ ;
Quigley, F ;
Nelson, DE ;
Bohnert, HJ .
PLANT JOURNAL, 2000, 24 (04) :511-522
[6]  
CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1016/0003-2697(87)90021-2
[7]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[8]   DIFFERENTIAL SOLUTE REGULATION IN LEAF BLADES OF VARIOUS AGES IN SALT-SENSITIVE WHEAT AND A SALT-TOLERANT WHEAT X LOPHOPYRUM-ELONGATUM (HOST) LOVE,A AMPHIPLOID [J].
COLMER, TD ;
EPSTEIN, E ;
DVORAK, J .
PLANT PHYSIOLOGY, 1995, 108 (04) :1715-1724
[9]  
Dellaporta S, 1983, Plant Mol BiolRep, V1, P19, DOI DOI 10.1007/BF02712670
[10]  
Deng YB, 1998, ACTA PHYTOECOLOGICA, V22, P164