Quantum Hall effect on the Lobachevsky plane

被引:11
|
作者
Bulaev, DV [1 ]
Geyler, VA [1 ]
Margulis, VA [1 ]
机构
[1] Mordovian NP Ogarev State Univ, Saransk 430000, Russia
基金
俄罗斯基础研究基金会;
关键词
quantum Hall effect; Lobachevsky plane;
D O I
10.1016/S0921-4526(03)00402-2
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The Hall conductivity of an electron gas on the surface of constant negative curvature (the Lobachevsky plane) in the presence of an orthogonal magnetic field is investigated. It is shown that the surface curvature decreases the quantum Hall plateau widths and shifts the steps in the Hall conductivity to higher magnetic fields (or to lower values of the chemical potential). An increase of temperature results in smearing of the steps. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:180 / 185
页数:6
相关论文
共 50 条
  • [41] Supersymmetry and localization in the quantum Hall effect
    Kondev, J
    Marston, JB
    NUCLEAR PHYSICS B, 1997, 497 (03) : 639 - 657
  • [42] Quantum Hall Effect In AlGaAs and Graphite Quantum Dots
    Shrivastava, Keshav N.
    NANOSYNTHESIS AND NANODEVICE, 2013, 667 : 1 - +
  • [43] Quantum Hall Effect and Langlands Program
    Ikeda, Kazuki
    ANNALS OF PHYSICS, 2018, 397 : 136 - 150
  • [44] Observing the quantum anomalous Hall effect
    Wang, Ling
    Ma, Xucun
    He, Ke
    NATIONAL SCIENCE REVIEW, 2014, 1 (01) : 60 - 61
  • [45] Quantum computation with quasiparticles of the fractional quantum Hall effect
    Averin, DV
    Goldman, VJ
    SOLID STATE COMMUNICATIONS, 2002, 121 (01) : 25 - 28
  • [46] Integer quantum Hall effect in a PbTe quantum well
    Chitta, V. A.
    Desrat, W.
    Maude, D. K.
    Piot, B. A.
    Oliveira, N. F., Jr.
    Rappl, P. H. O.
    Ueta, A. Y.
    Abramof, E.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2006, 34 (1-2) : 124 - 127
  • [47] Quantum Hall effect on the Hofstadter butterfly
    Koshino, M
    Ando, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2004, 73 (12) : 3243 - 3246
  • [48] A holographic model of the quantum Hall effect
    Bergman, Oren
    Jokela, Niko
    Lifschytz, Gilad
    Lippert, Matthew
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2011, 59 (7-8): : 734 - 740
  • [49] An Isoperimetric Problem on the Lobachevsky Plane with a Left-Invariant Finsler Structure
    Myrikova, V. A.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2023, 321 (01) : 208 - 221
  • [50] Particular Cases of Quasi-Parallelograms of Type I on the Lobachevsky Plane
    Maskina M.S.
    Zhilnikov T.A.
    Journal of Mathematical Sciences, 2023, 276 (6) : 759 - 766