Application of predictive control to the Hegselmann-Krause model

被引:12
|
作者
Almeida, Ricardo [1 ]
Girejko, Ewa [2 ]
Machado, Luis [3 ,4 ]
Malinowska, Agnieszka B. [2 ]
Martins, Natalia [1 ]
机构
[1] Univ Aveiro, Dept Math, Ctr Res & Dev Math & Applicat CIDMA, P-3810193 Aveiro, Portugal
[2] Bialystok Tech Univ, Fac Comp Sci, PL-15351 Bialystok, Poland
[3] Univ Tras Os Montes & Alto Douro UTAD, Dept Math, P-5001801 Vila Real, Portugal
[4] Univ Coimbra, ISR, Dept Elect & Comp Engn, P-3030290 Coimbra, Portugal
关键词
consensus formation; opinion dynamics; predictive control; time scale calculus; OPINION DYNAMICS; TIME;
D O I
10.1002/mma.5132
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to analyze the behavior of Hegselmann-Krause-type models. General sufficient conditions for achieving consensus are provided. Model predictive control is applied to the Hegselmann-Krause system in the context of time scales. Numerical simulations show that the predictive control mechanism has the ability to steer the system to attain a consensus. Moreover, faster consensus speed is observed when compared with the classical model. Finally, in the case of the discrete time scale and all agents being neighbors at the initial time, conditions guaranteeing an average consensus are given.
引用
收藏
页码:9191 / 9202
页数:12
相关论文
共 50 条
  • [31] Opinion Dynamics Analysis of Nucleus Hegselmann-Krause Model in Social Networks
    Xi, Xiaomiao
    Liu, Qingsong
    Chai, Li
    IFAC PAPERSONLINE, 2020, 55 (03): : 25 - 30
  • [32] Heterogeneous Hegselmann-Krause Dynamics With Environment and Communication Noise
    Chen, Ge
    Su, Wei
    Ding, Songyuan
    Hong, Yiguang
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (08) : 3409 - 3424
  • [33] Partial convergence of heterogeneous Hegselmann-Krause opinion dynamics
    Wei Su
    YaJuan Gu
    Sha Wang
    YongGuang Yu
    Science China Technological Sciences, 2017, 60 : 1433 - 1438
  • [34] Discrete-Time Hegselmann-Krause Model for a Leader-Follower Social Network
    Ding Yixuan
    Tan Cheng
    Wong Wing Shing
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 9692 - 9697
  • [35] Mixed Opinion Dynamics Based on DeGroot Model and Hegselmann-Krause Model in Social Networks
    Wu, Zhibin
    Zhou, Qinyue
    Dong, Yucheng
    Xu, Jiuping
    Altalhi, Abdulrahman H.
    Herrera, Francisco
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (01): : 296 - 308
  • [36] Noisy Hegselmann-Krause Systems: Phase Transition and the 2R-Conjecture
    Wang, Chu
    Li, Qianxiao
    E, Weinan
    Chazelle, Bernard
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 2632 - 2637
  • [37] Game-Theoretic Analysis of the Hegselmann-Krause Model for Opinion Dynamics in Finite Dimensions
    Etesami, Seyed Rasoul
    Basar, Tamer
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (07) : 1886 - 1897
  • [38] AMHK: A Novel Opinion Dynamics Affection Mobilization-Based Hegselmann-Krause Model
    Xu, Han
    Ai, Kaili
    Cai, Hui
    Wu, Shuangshuang
    Xu, Minghua
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 3421 - 3426
  • [39] On Graphs with Bounded and Unbounded Convergence Times in Social Hegselmann-Krause Dynamics
    Parasnis, Rohit
    Franceschetti, Massimo
    Touri, Behrouz
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 6431 - 6436
  • [40] Analysis of modified Hegselmann-Krause opinion dynamics based on conformity
    Zhang S.-Q.
    Liu B.
    Chai L.
    Kongzhi yu Juece/Control and Decision, 2024, 39 (03): : 965 - 974