Application of predictive control to the Hegselmann-Krause model

被引:12
|
作者
Almeida, Ricardo [1 ]
Girejko, Ewa [2 ]
Machado, Luis [3 ,4 ]
Malinowska, Agnieszka B. [2 ]
Martins, Natalia [1 ]
机构
[1] Univ Aveiro, Dept Math, Ctr Res & Dev Math & Applicat CIDMA, P-3810193 Aveiro, Portugal
[2] Bialystok Tech Univ, Fac Comp Sci, PL-15351 Bialystok, Poland
[3] Univ Tras Os Montes & Alto Douro UTAD, Dept Math, P-5001801 Vila Real, Portugal
[4] Univ Coimbra, ISR, Dept Elect & Comp Engn, P-3030290 Coimbra, Portugal
关键词
consensus formation; opinion dynamics; predictive control; time scale calculus; OPINION DYNAMICS; TIME;
D O I
10.1002/mma.5132
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to analyze the behavior of Hegselmann-Krause-type models. General sufficient conditions for achieving consensus are provided. Model predictive control is applied to the Hegselmann-Krause system in the context of time scales. Numerical simulations show that the predictive control mechanism has the ability to steer the system to attain a consensus. Moreover, faster consensus speed is observed when compared with the classical model. Finally, in the case of the discrete time scale and all agents being neighbors at the initial time, conditions guaranteeing an average consensus are given.
引用
收藏
页码:9191 / 9202
页数:12
相关论文
共 50 条
  • [21] HKML: A Novel Opinion Dynamics Hegselmann-Krause Model with Media Literacy
    Xu, Han
    Cai, Hui
    Wu, Shuangshuang
    Ai, Kaili
    Xu, Minghua
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 52 - 57
  • [22] Inhomogeneous Hegselmann-Krause models with two types of noise
    Du, Linglong
    Wang, Yue
    Wang, Ke
    AUTOMATICA, 2025, 171
  • [23] Opinion-Climate-Based Hegselmann-Krause dynamics
    Xu, Han
    Li, Ziqi
    Guan, Anqi
    Xu, Minghua
    Wang, Bang
    PATTERN RECOGNITION LETTERS, 2023, 167 : 9 - 17
  • [24] Partial convergence of heterogeneous Hegselmann-Krause opinion dynamics
    Su, Wei
    Gu, YaJuan
    Wang, Sha
    Yu, YongGuang
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2017, 60 (09) : 1433 - 1438
  • [25] A Particle Method for Continuous Hegselmann-Krause Opinion Dynamics
    Borgers, Christoph
    Dragovic, Natasa
    Haensch, Anna
    Kirshtein, Arkadz
    COMPLEX NETWORKS & THEIR APPLICATIONS XII, VOL 2, COMPLEX NETWORKS 2023, 2024, 1142 : 457 - 469
  • [26] Consensus Strategies for a Hegselmann-Krause Model with Leadership and Time Variable Time Delay
    Paolucci, Alessandro
    Pignotti, Cristina
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024, 36 (04) : 3207 - 3232
  • [27] Analysis and Application of Weighted-Median Hegselmann-Krause Opinion Dynamics Model on Social Networks
    Li, Guang
    Liu, Qingsong
    Chai, Li
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 5409 - 5414
  • [28] Partial convergence of heterogeneous Hegselmann-Krause opinion dynamics
    SU Wei
    GU YaJuan
    WANG Sha
    YU YongGuang
    Science China(Technological Sciences), 2017, (09) : 1433 - 1438
  • [29] Fuzzy Hegselmann-Krause Opinion Dynamics with Opinion Leaders
    Lu, Yi
    Zhao, Yiyi
    Zhang, Jiangbo
    Hu, Jiangping
    Hu, Xiaoming
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 6019 - 6024
  • [30] Termination Time of Multidimensional Hegselmann-Krause Opinion Dynamics
    Etesami, Seyed Rasoul
    Basar, Tamer
    Nedic, Angelia
    Touri, Behrouz
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 1255 - 1260