Application of predictive control to the Hegselmann-Krause model

被引:12
|
作者
Almeida, Ricardo [1 ]
Girejko, Ewa [2 ]
Machado, Luis [3 ,4 ]
Malinowska, Agnieszka B. [2 ]
Martins, Natalia [1 ]
机构
[1] Univ Aveiro, Dept Math, Ctr Res & Dev Math & Applicat CIDMA, P-3810193 Aveiro, Portugal
[2] Bialystok Tech Univ, Fac Comp Sci, PL-15351 Bialystok, Poland
[3] Univ Tras Os Montes & Alto Douro UTAD, Dept Math, P-5001801 Vila Real, Portugal
[4] Univ Coimbra, ISR, Dept Elect & Comp Engn, P-3030290 Coimbra, Portugal
关键词
consensus formation; opinion dynamics; predictive control; time scale calculus; OPINION DYNAMICS; TIME;
D O I
10.1002/mma.5132
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to analyze the behavior of Hegselmann-Krause-type models. General sufficient conditions for achieving consensus are provided. Model predictive control is applied to the Hegselmann-Krause system in the context of time scales. Numerical simulations show that the predictive control mechanism has the ability to steer the system to attain a consensus. Moreover, faster consensus speed is observed when compared with the classical model. Finally, in the case of the discrete time scale and all agents being neighbors at the initial time, conditions guaranteeing an average consensus are given.
引用
收藏
页码:9191 / 9202
页数:12
相关论文
共 50 条
  • [1] Consensus in the Hegselmann-Krause Model
    Lanchier, Nicolas
    Li, Hsin-Lun
    JOURNAL OF STATISTICAL PHYSICS, 2022, 187 (03)
  • [2] Non-invasive control of the Hegselmann-Krause type model
    Girejko, Ewa
    Malinowska, Agnieszka B.
    2017 22ND INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2017, : 906 - 911
  • [3] Extending the Hegselmann-Krause Model I
    Douven, Igor
    Riegler, Alexander
    LOGIC JOURNAL OF THE IGPL, 2010, 18 (02) : 323 - 335
  • [4] Non-invasive Control of the Fractional Hegselmann-Krause Type Model
    Almeida, Ricardo
    Malinowska, Agnieszka B.
    Odzijewicz, Tatiana
    NON-INTEGER ORDER CALCULUS AND ITS APPLICATIONS, 2019, 496 : 14 - 27
  • [5] MIXED HEGSELMANN-KRAUSE DYNAMICS II
    LI, Hsin-lun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (05): : 2981 - 2993
  • [6] Consensus Stability in the Hegselmann-Krause Model with Coopetition and Cooperosity
    Tangredi, Domenico
    Iervolino, Raffaele
    Vasca, Francesco
    IFAC PAPERSONLINE, 2017, 50 (01): : 11920 - 11925
  • [7] Optimal control of the freezing time in the Hegselmann-Krause dynamics
    Kurz, Sascha
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2015, 21 (08) : 633 - 648
  • [8] Inertial Hegselmann-Krause Systems
    Chazelle, Bernard
    Wang, Chu
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (08) : 3905 - 3913
  • [9] Modified Hegselmann-Krause Model with Social Pressure in Social Networks
    Li, Yanjie
    Li, Xianyong
    Du, Yajun
    Tang, Ying
    Fan, Yongquan
    2022 3RD INFORMATION COMMUNICATION TECHNOLOGIES CONFERENCE (ICTC 2022), 2022, : 199 - 205
  • [10] On the Hegselmann-Krause conjecture in opinion dynamics
    Kurz, Sascha
    Rambau, Joerg
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (06) : 859 - 876