Application of predictive control to the Hegselmann-Krause model

被引:13
作者
Almeida, Ricardo [1 ]
Girejko, Ewa [2 ]
Machado, Luis [3 ,4 ]
Malinowska, Agnieszka B. [2 ]
Martins, Natalia [1 ]
机构
[1] Univ Aveiro, Dept Math, Ctr Res & Dev Math & Applicat CIDMA, P-3810193 Aveiro, Portugal
[2] Bialystok Tech Univ, Fac Comp Sci, PL-15351 Bialystok, Poland
[3] Univ Tras Os Montes & Alto Douro UTAD, Dept Math, P-5001801 Vila Real, Portugal
[4] Univ Coimbra, ISR, Dept Elect & Comp Engn, P-3030290 Coimbra, Portugal
关键词
consensus formation; opinion dynamics; predictive control; time scale calculus; OPINION DYNAMICS; TIME;
D O I
10.1002/mma.5132
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to analyze the behavior of Hegselmann-Krause-type models. General sufficient conditions for achieving consensus are provided. Model predictive control is applied to the Hegselmann-Krause system in the context of time scales. Numerical simulations show that the predictive control mechanism has the ability to steer the system to attain a consensus. Moreover, faster consensus speed is observed when compared with the classical model. Finally, in the case of the discrete time scale and all agents being neighbors at the initial time, conditions guaranteeing an average consensus are given.
引用
收藏
页码:9191 / 9202
页数:12
相关论文
共 16 条
[1]  
[Anonymous], 2002, Robot Teams: From Diversity to Polymorphism
[2]  
Aulbach B, 1990, C MATH SOC J BOLYAI, V53
[3]   CONTINUOUS-TIME AVERAGE-PRESERVING OPINION DYNAMICS WITH OPINION-DEPENDENT COMMUNICATIONS [J].
Blondel, Vincent D. ;
Hendrickx, Julien M. ;
Tsitsiklis, John N. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2010, 48 (08) :5214-5240
[4]  
Bohner M., 2001, Dynamic equations on time scales: an introduction with applications, DOI DOI 10.1007/978-1-4612-0201-1
[5]  
Camacho E. F., 2007, MODEL PREDICTIVE CON
[6]   Decentralized control of satellite formations [J].
Carpenter, JR .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2002, 12 (2-3) :141-161
[7]   On the mathematics of emergence [J].
Cucker, Felipe ;
Smale, Steve .
JAPANESE JOURNAL OF MATHEMATICS, 2007, 2 (01) :197-227
[8]   Information flow and cooperative control of vehicle formations [J].
Fax, JA ;
Murray, RM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (09) :1465-1476
[9]   ON CONSENSUS IN THE CUCKER SMALE TYPE MODEL ON ISOLATED TIME SCALES [J].
Girejko, Ewa ;
Machado, Luis ;
Malinowska, Agnieszka B. ;
Martins, Natalia .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2018, 11 (01) :77-89
[10]   Krause's model of opinion dynamics on isolated time scales [J].
Girejko, Ewa ;
Machado, Luis ;
Malinowska, Agnieszka B. ;
Martins, Natalia .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (18) :5302-5314