Bayesian nonparametric forecasting for INAR models

被引:9
作者
Bisaglia, Luisa
Canale, Antonio [1 ,2 ,3 ]
机构
[1] Univ Turin, Dept Econ & Stat, Corso Unione Sovietica 218bis, I-10134 Turin, Italy
[2] Collegio Carlo Alberto, Moncalieri, Italy
[3] Univ Padua, Dept Stat Sci, I-35100 Padua, Italy
关键词
Count time series; INAR(1); Dirichlet process mixtures; Forecasting; Gibbs sampling algorithm; COUNT TIME-SERIES; DISTRIBUTIONS; AUTOREGRESSION; REGRESSION; MIXTURES;
D O I
10.1016/j.csda.2014.12.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A nonparametric Bayesian method for producing coherent predictions of count time series with the nonnegative integer-valued autoregressive process is introduced. Predictions are based on estimates of h-step-ahead predictive mass functions, assuming a nonparametric distribution for the innovation process. That is, the distribution of errors are modeled by means of a Dirichlet process mixture of rounded Gaussians. This class of prior has large support on the space and probability mass functions and can generate almost any kind of count distribution, including over/under-dispersion and multimodality. An efficient Gibbs sampler is developed for posterior computation, and the method is used to analyze a dataset of visits to a web site. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:70 / 78
页数:9
相关论文
共 24 条
[1]  
Al-Osh M. A., 1987, Journal of Time Series Analysis, V8, P261, DOI [10.1111/j.1467-9892.1987.tb00438.x, DOI 10.1111/JTSA.1987.8.ISSUE-3]
[2]  
[Anonymous], 1992, BAYESIAN STAT
[3]   Bayesian Kernel Mixtures for Counts [J].
Canale, Antonio ;
Dunson, David B. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (496) :1528-1539
[4]   Semiparametric regression for count data [J].
Carota, C ;
Parmigiani, G .
BIOMETRIKA, 2002, 89 (02) :265-281
[5]  
Chatfield C., 2000, TIME SERIES FORECAST, V1, DOI DOI 10.1201/9781420036206/TIME-SERIES-FORECASTING-CHRIS-CHATFIELD
[6]   Efficient estimation of auto-regression parameters and innovation distributions for semiparametric integer-valued AR(p) models [J].
Drost, Feike C. ;
van den Akker, Ramon ;
Werker, Bas J. M. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2009, 71 :467-485
[7]   BAYESIAN DENSITY-ESTIMATION AND INFERENCE USING MIXTURES [J].
ESCOBAR, MD ;
WEST, M .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (430) :577-588
[8]   BAYESIAN ANALYSIS OF SOME NONPARAMETRIC PROBLEMS [J].
FERGUSON, TS .
ANNALS OF STATISTICS, 1973, 1 (02) :209-230
[9]   PRIOR DISTRIBUTIONS ON SPACES OF PROBABILITY MEASURES [J].
FERGUSON, TS .
ANNALS OF STATISTICS, 1974, 2 (04) :615-629
[10]   Forecasting discrete valued low count time series [J].
Freeland, RK ;
McCabe, BPM .
INTERNATIONAL JOURNAL OF FORECASTING, 2004, 20 (03) :427-434