Integrating object proposal with attention networks for video saliency detection

被引:44
作者
Jian, Muwei [1 ,2 ,3 ]
Wang, Jiaojin [1 ]
Yu, Hui [3 ]
Wang, Gai-Ge [4 ]
机构
[1] Shandong Univ Finance & Econ, Sch Comp Sci & Technol, Jinan, Peoples R China
[2] Linyi Univ, Sch Informat Sci & Engn, Linyi, Shandong, Peoples R China
[3] Univ Portsmouth, Sch Creat Technol, Portsmouth, Hants, England
[4] Ocean Univ China, Dept Comp Sci & Technol, Qingdao, Peoples R China
基金
中国国家自然科学基金;
关键词
Video saliency detection; Saliency; Object proposal; Attention networks; Spatiotemporal features; VISUAL-ATTENTION; SEGMENTATION; OPTIMIZATION; TRACKING; MODEL;
D O I
10.1016/j.ins.2021.08.069
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Video saliency detection is an active research issue in both information science and visual psychology. In this paper, we propose an efficient video saliency-detection model, based on integrating object-proposal with attention networks, for efficiently capturing salient objects and human attention areas in the dynamic scenes of videos. In our algorithm, visual object features are first exploited from individual video frame, using real-time neural net-works for object detection. Then, the spatial position information of each frame is used to screen out the large background in the video, so as to reduce the influence of background noises. Finally, the results, with backgrounds removed, are further refined by spreading the visual clues through an adaptive weighting scheme into the later layers of a convolutional neural network. Experimental results, conducted on widespread and commonly used data-bases for video saliency detection, verify that our proposed framework outperforms exist-ing deep models. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:819 / 830
页数:12
相关论文
共 47 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]  
Achanta R, 2009, PROC CVPR IEEE, P1597, DOI 10.1109/CVPRW.2009.5206596
[3]   Video Saliency Detection via Spatial-Temporal Fusion and Low-Rank Coherency Diffusion [J].
Chen, Chenglizhao ;
Li, Shuai ;
Wang, Yongguang ;
Qin, Hong ;
Hao, Aimin .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (07) :3156-3170
[4]   SCOM: Spatiotemporal Constrained Optimization for Salient Object Detection [J].
Chen, Yuhuan ;
Zou, Wenbin ;
Tang, Yi ;
Li, Xia ;
Xu, Chen ;
Komodakis, Nikos .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (07) :3345-3357
[5]   A classifier-guided approach for top-down salient object detection [J].
Cholakkal, Hisham ;
Johnson, Jubin ;
Rajan, Deepu .
SIGNAL PROCESSING-IMAGE COMMUNICATION, 2016, 45 :24-40
[6]   A Video Saliency Detection Model in Compressed Domain [J].
Fang, Yuming ;
Lin, Weisi ;
Chen, Zhenzhong ;
Tsai, Chia-Ming ;
Lin, Chia-Wen .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2014, 24 (01) :27-38
[7]   Saliency-Guided Quality Assessment of Screen Content Images [J].
Gu, Ke ;
Wang, Shiqi ;
Yang, Huan ;
Lin, Weisi ;
Zhai, Guangtao ;
Yang, Xiaokang ;
Zhang, Wenjun .
IEEE TRANSACTIONS ON MULTIMEDIA, 2016, 18 (06) :1098-1110
[8]   A model of saliency-based visual attention for rapid scene analysis [J].
Itti, L ;
Koch, C ;
Niebur, E .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (11) :1254-1259
[9]  
Jetley S., 2018, ICLR
[10]   CNN-based encoder-decoder networks for salient object detection: A comprehensive review and recent advances [J].
Ji, Yuzhu ;
Zhang, Haijun ;
Zhang, Zhao ;
Liu, Ming .
INFORMATION SCIENCES, 2021, 546 :835-857