Negative Selection and Neural Network based Algorithm for Intrusion Detection in IoT

被引:0
|
作者
Pamukov, Marin E. [1 ]
Poulkov, Vladimir K. [1 ]
Shterev, Vasil A. [1 ]
机构
[1] Tech Univ Sofia, Telecommun Fac, Sofia, Bulgaria
来源
2018 41ST INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP) | 2018年
关键词
Neural Networks; Negative Selection; Intrusion Detection System;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Internet of Things expands the boundaries of the Internet to encompass many devices with constraint computational and power capabilities. This limits the implementation of security techniques such as Intrusion Detection Systems. In this paper, we propose a novel classification algorithm specifically designed for Internet of Things Intrusion Detection Systems. Our solution consists of two distinct layers. First, we employ a Negative Selection algorithm for creating a training set based only on the knowledge of the normal network behavior. Based on this data we train a simple Neural Network that is used to do the actual classification. This multilayer approach allows to distance the training complexity from the computationally and power constrained IoT devices. Furthermore, the addition of Negative Selection layer allows us to train a Neural Network only based on the self/normal behavior of the network, without the need for nonself/attack data. We call this algorithm Negative Selection Neural Network (NSNN). We test the algorithm against the KDD NSL dataset. The test results lead to the conclusion that the proposed algorithm is capable of functioning as network intrusion detection classifier.
引用
收藏
页码:636 / 640
页数:5
相关论文
共 50 条
  • [1] Multiple Negative Selection Algorithm: Improving Detection Error Rates in IoT Intrusion Detection Systems
    Pamukov, Marin E.
    Poulkov, Vladimir K.
    PROCEEDINGS OF THE 2017 9TH IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS: TECHNOLOGY AND APPLICATIONS (IDAACS), VOL 1, 2017, : 543 - 547
  • [2] Negative Selection Algorithm Based Intrusion Detection Model
    Tosin, Salau-Ibrahim Taofeekat
    Gbenga, Jimoh Rasheed
    20TH IEEE MEDITERRANEAN ELETROTECHNICAL CONFERENCE (IEEE MELECON 2020), 2020, : 202 - 206
  • [3] Intrusion Detection for IoT Based on Improved Genetic Algorithm and Deep Belief Network
    Zhang, Ying
    Li, Peisong
    Wang, Xinheng
    IEEE ACCESS, 2019, 7 : 31711 - 31722
  • [4] Research and Implementation of Intrusion Detection Algorithm Based on BP Neural Network
    Wu, Zhenzhen
    PROCEEDINGS OF THE 2015 CONFERENCE ON INFORMATIZATION IN EDUCATION, MANAGEMENT AND BUSINESS, 2015, 20 : 228 - 232
  • [5] Enhancing intrusion detection with feature selection and neural network
    Wu, Chunhui
    Li, Wenjuan
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2021, 36 (07) : 3087 - 3105
  • [6] IoT-based blockchain intrusion detection using optimized recurrent neural network
    V. Saravanan
    M Madiajagan
    Shaik Mohammad Rafee
    P Sanju
    Tasneem Bano Rehman
    Balachandra Pattanaik
    Multimedia Tools and Applications, 2024, 83 : 31505 - 31526
  • [7] IoT-based blockchain intrusion detection using optimized recurrent neural network
    Saravanan, V.
    Madiajagan, M.
    Rafee, Shaik Mohammad
    Sanju, P.
    Rehman, Tasneem Bano
    Pattanaik, Balachandra
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (11) : 31505 - 31526
  • [8] Negative selection with antigen feedback in intrusion detection
    Ma, Wanli
    Tran, Dat
    Sharma, Dharmendra
    ARTIFICIAL IMMUNE SYSTEMS, PROCEEDINGS, 2008, 5132 : 200 - +
  • [9] An Intrusion Detection System Based On Neural Network
    Can, Okan
    Sahingoz, Ozgur Koray
    2015 23RD SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2015, : 2302 - 2305
  • [10] A distributed neural network learning algorithm for network intrusion detection system
    Liu, Yanheng
    Tian, Daxin
    Yu, Xuegang
    Wang, Jian
    NEURAL INFORMATION PROCESSING, PT 3, PROCEEDINGS, 2006, 4234 : 201 - 208