Error estimation for the finite element evaluation of GI and GII in mixed-mode linear elastic fracture mechanics

被引:19
作者
Giner, E [1 ]
Fuenmayor, FJ [1 ]
Baeza, L [1 ]
Tarancón, JE [1 ]
机构
[1] Univ Politecn Valencia, Dept Ingn Mecan & Mat, E-46022 Valencia, Spain
关键词
discretization error; error estimation; strain energy release rate; EDI-method; sensitivity analysis; mixed-mode fracture;
D O I
10.1016/j.finel.2004.11.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A discretization error estimator for the finite element evaluation of the strain energy release rates (SERRs) G(I), G(II) is presented for mixed-mode bidimensional problems of the linear elastic fracture mechanics (LEFM). The estimator is related to one of the most efficient energetic methods: the equivalent domain integral method (EDI). A continuum approach of the shape design sensitivity analysis (SDSA) is applied to the fracture mechanics problem in combination with the field decomposition technique to obtain separate estimates of the discretization error for each mode. The error estimator enables an a posteriori improvement of G(I), G(II) for a given finite element mesh. The improvement is achieved by adding the estimated errors to the previously calculated values of G(I), G(II) by means of the discrete analytical stiffness derivative method (DASD). This is verified through numerical examples based on the Westergaard's problem and a finite domain problem. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:1079 / 1104
页数:26
相关论文
共 50 条
[21]   PEAK LOAD ESTIMATION OF PRE-CRACKED PLAIN CONCRETE BEAMS IN MIXED-MODE FRACTURE [J].
Guo, X. ;
Su, R. K. L. ;
Young, B. .
M2D2015: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON MECHANICS AND MATERIALS IN DESIGN, 2015, :1723-1736
[22]   An embedded cohesive crack model for finite element analysis of mixed mode fracture of concrete [J].
Sancho, J. M. ;
Planas, J. ;
Galvez, J. C. ;
Reyes, E. ;
Cendon, D. A. .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2006, 29 (12) :1056-1065
[23]   Mixed-mode delamination growth of laminar composites by using three-dimensional finite element modeling [J].
Silva, A ;
de Freitas, MJM .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2003, 26 (06) :543-549
[24]   Three-dimensional finite element analysis of mixed-mode interfacial delamination for the pull-off test [J].
Sun, Zuo ;
Dillard, David A. .
PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION 2007, VOL 3: DESIGN AND MANUFACTURING, 2008, :633-641
[25]   Finite element analysis of a low-velocity impact test for glass fiber-reinforced polypropylene composites considering mixed-mode interlaminar fracture toughness [J].
Jung, Ku-Hyun ;
Kim, Do-Hyoung ;
Kim, Hee-June ;
Park, Seong-Hyun ;
Jhang, Kyung-Young ;
Kim, Hak-Sung .
COMPOSITE STRUCTURES, 2017, 160 :446-456
[26]   A 3D ductile constitutive mixed-mode model of cohesive elements for the finite element analysis of adhesive joints [J].
Anyfantis, Konstantinos N. ;
Tsouvalis, Nicholas G. .
JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY, 2013, 27 (10) :1146-1178
[27]   MIXED MODE FRACTURE FOR LINEAR ELASTIC MATERIALS BASED ON STRAIN THEORY USED IN LOW PERMEABILITY RESERVOIRS [J].
Zhang, Jian .
FRESENIUS ENVIRONMENTAL BULLETIN, 2019, 28 (07) :5632-5637
[28]   Finite element modeling of mixed adhesive layer fracture mode for FRP web strengthening of steel bridges [J].
Okeil, Ayman M. ;
Ulger, Tuna .
CANADIAN JOURNAL OF CIVIL ENGINEERING, 2025,
[29]   A posteriori error estimation via mode-based finite element formulation using deep learning [J].
Jung, Jaeho ;
Park, Seunghwan ;
Lee, Chaemin .
STRUCTURAL ENGINEERING AND MECHANICS, 2022, 83 (02) :273-282
[30]   A priori error estimation for the dual mixed finite element method of the elastodynamic problem in a polygonal domain, II [J].
Boulaajine, L. ;
Farhloul, M. ;
Paquet, L. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (05) :1288-1310