Error estimation for the finite element evaluation of GI and GII in mixed-mode linear elastic fracture mechanics

被引:19
|
作者
Giner, E [1 ]
Fuenmayor, FJ [1 ]
Baeza, L [1 ]
Tarancón, JE [1 ]
机构
[1] Univ Politecn Valencia, Dept Ingn Mecan & Mat, E-46022 Valencia, Spain
关键词
discretization error; error estimation; strain energy release rate; EDI-method; sensitivity analysis; mixed-mode fracture;
D O I
10.1016/j.finel.2004.11.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A discretization error estimator for the finite element evaluation of the strain energy release rates (SERRs) G(I), G(II) is presented for mixed-mode bidimensional problems of the linear elastic fracture mechanics (LEFM). The estimator is related to one of the most efficient energetic methods: the equivalent domain integral method (EDI). A continuum approach of the shape design sensitivity analysis (SDSA) is applied to the fracture mechanics problem in combination with the field decomposition technique to obtain separate estimates of the discretization error for each mode. The error estimator enables an a posteriori improvement of G(I), G(II) for a given finite element mesh. The improvement is achieved by adding the estimated errors to the previously calculated values of G(I), G(II) by means of the discrete analytical stiffness derivative method (DASD). This is verified through numerical examples based on the Westergaard's problem and a finite domain problem. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:1079 / 1104
页数:26
相关论文
共 50 条
  • [1] Damage and fracture mechanics approaches to mixed-mode discrete fracture with dilatancy
    Alfaiate, J.
    Sluijs, L. J.
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2019, 104
  • [2] An a-posteriori error estimator for linear elastic fracture mechanics using the stable generalized/extended finite element method
    R. M. Lins
    M. D. C. Ferreira
    S. P. B. Proença
    C. A. Duarte
    Computational Mechanics, 2015, 56 : 947 - 965
  • [3] An a-posteriori error estimator for linear elastic fracture mechanics using the stable generalized/extended finite element method
    Lins, R. M.
    Ferreira, M. D. C.
    Proenca, S. P. B.
    Duarte, C. A.
    COMPUTATIONAL MECHANICS, 2015, 56 (06) : 947 - 965
  • [4] Robust a posteriori error estimation for mixed finite element approximation of linear poroelasticity
    Khan, Arbaz
    Silvester, David J.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (03) : 2000 - 2025
  • [5] Mixed mode fracture toughness: An empirical formulation for GI/GII determination in asymmetric DCB specimens
    Mollon, V.
    Bonhomme, J.
    Vina, J.
    Argueelles, A.
    ENGINEERING STRUCTURES, 2010, 32 (11) : 3699 - 3703
  • [6] Simulation of mixed-mode fracture process of reinforced concrete beam based on extended finite element method
    Ru, Zhong-Liang
    Shen, Wei
    Zhao, Hong-Bo
    Gongcheng Lixue/Engineering Mechanics, 2013, 30 (05): : 215 - 220
  • [7] Mixed-mode fracture characterization of fine aggregate mixtures using semicircular bend fracture test and, extended finite element modeling
    Ban, Hoki
    Im, Soohyok
    Kim, Yong-Rak
    CONSTRUCTION AND BUILDING MATERIALS, 2015, 101 : 721 - 729
  • [8] NUMERICAL EVALUATION OF THE MIXED-MODE FRACTURE OF COMPOSITE BONDED JOINTS
    Santos, Manuel A. S.
    Campilho, Raul D. S. G.
    IRF2016: 5TH INTERNATIONAL CONFERENCE INTEGRITY-RELIABILITY-FAILURE, 2016, : 15 - 16
  • [9] An improvement of the EDI method in linear elastic fracture mechanics by means of an a posteriori error estimator in G
    Giner, E
    Fuenmayor, FJ
    Tarancón, JE
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 59 (04) : 533 - 558
  • [10] Virtual element method for mixed-mode cohesive fracture simulation with element split and domain integral
    Choi, Habeun
    Chi, Heng
    Park, Kyoungsoo
    INTERNATIONAL JOURNAL OF FRACTURE, 2023, 240 (01) : 51 - 70