Effect of numerical integration on a new rotated nonconforming quadrilateral element

被引:0
作者
Meng, Zhaoliang [1 ,2 ]
Cui, Jintao [4 ,5 ]
Luo, Zhongxuan [1 ,3 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
[2] Key Lab Computat Math & Data Intelligence Liaonin, Dalian 116024, Peoples R China
[3] Dalian Univ Technol, Sch Software, Dalian 116620, Peoples R China
[4] Jinan Univ, Dept Math, Guangzhou 510632, Peoples R China
[5] Hong Kong Polytech Univ, Dept Appl Math, Hung Hum, Hong Kong, Peoples R China
关键词
Nonconforming element; Nonparametric; Numerical integration; Quadrilateral mesh; Q(1) ELEMENT; 4-NODE;
D O I
10.1016/j.cam.2021.113798
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new nonparametric nonconforming quadrilateral finite element is used to approximate the general second-order elliptic problem in two dimensions. Some optimal numerical integration formulas are presented and analyzed. These formulas are derived on a reference quadrilateral which can be linearly mapped to a physical quadrilateral. The novelty of these formulas is that they only involve two quadrature nodes which excludes even a Q(1) unisolvent set, and they are not required to be exact for all the shape functions. Numerical tests show that the presented quadrature rules can also be used coupled with other low-order elements. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
[21]   A Numerical Integration Method of Dynamic Finite Element Analysis [J].
Liang, Xing Pei .
ADVANCES IN MECHANICAL DESIGN, PTS 1 AND 2, 2011, 199-200 :1257-1261
[22]   Numerical integration for symmetric Galerkin Boundary Element Method [J].
Panczyk, Beata ;
Sikora, Jan .
PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (12A) :36-39
[23]   ON THE EFFECT OF NUMERICAL INTEGRATION IN THE FINITE ELEMENT SOLUTION OF AN ELLIPTIC PROBLEM WITH A NONLINEAR NEWTON BOUNDARY CONDITION [J].
Bartos, Ondrej ;
Feistauer, Miloslav ;
Roskovec, Filip .
APPLICATIONS OF MATHEMATICS, 2019, 64 (02) :129-167
[24]   On the effect of numerical integration in the finite element solution of an elliptic problem with a nonlinear Newton boundary condition [J].
Ondřej Bartoš ;
Miloslav Feistauer ;
Filip Roskovec .
Applications of Mathematics, 2019, 64 :129-167
[25]   Numerical integration in the DGFEM for 3D nonlinear convection-diffusion problems on nonconforming meshes [J].
Sobotikova, Veronika .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2008, 29 (7-8) :927-958
[26]   A new nonconforming finite element method for convection dominated diffusion-reaction equations [J].
Dibyendu Adak ;
E. Natarajan ;
Sarvesh Kumar .
International Journal of Advances in Engineering Sciences and Applied Mathematics, 2016, 8 (4) :274-283
[27]   A new nonconforming finite element method for convection dominated diffusion-reaction equations [J].
Adak, Dibyendu ;
Natarajan, E. ;
Kumar, Sarvesh .
INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING SCIENCES AND APPLIED MATHEMATICS, 2016, 8 (04) :274-283
[28]   A new approach to numerical differentiation and integration [J].
Qu, R .
MATHEMATICAL AND COMPUTER MODELLING, 1996, 24 (10) :55-68
[29]   Numerical integration and discrepancy, a new approach [J].
Triebel, Hans .
MATHEMATISCHE NACHRICHTEN, 2010, 283 (01) :139-159
[30]   Effect of numerical integration on meshless methods [J].
Babuska, Ivo ;
Banerjee, Uday ;
Osborn, John E. ;
Zhang, Qinghui .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (37-40) :2886-2897