Atomic and electronic structure of Lomer dislocations at CdTe bicrystal interface

被引:33
|
作者
Sun, Ce [1 ]
Paulauskas, Tadas [2 ]
Sen, Fatih G. [3 ]
Lian, Guoda [1 ]
Wang, Jinguo [1 ]
Buurma, Christopher [2 ]
Chan, Maria K. Y. [3 ]
Klie, Robert F. [2 ]
Kim, Moon J. [1 ]
机构
[1] Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75080 USA
[2] Univ Illinois, Dept Phys, Chicago, IL 60607 USA
[3] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
基金
美国国家科学基金会;
关键词
TOTAL-ENERGY CALCULATIONS; EFFICIENCY; DIFFUSION; SCALE;
D O I
10.1038/srep27009
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Extended defects are of considerable importance in determining the electronic properties of semiconductors, especially in photovoltaics (PVs), due to their effects on electron-hole recombination. We employ model systems to study the effects of dislocations in CdTe by constructing grain boundaries using wafer bonding. Atomic-resolution scanning transmission electron microscopy (STEM) of a [1-10]/(110) 4.8 degrees tilt grain boundary reveals that the interface is composed of three distinct types of Lomer dislocations. Geometrical phase analysis is used to map strain fields, while STEM and density functional theory (DFT) modeling determine the atomic structure at the interface. The electronic structure of the dislocation cores calculated using DFT shows significant mid-gap states and different charge-channeling tendencies. Cl-doping is shown to reduce the midgap states, while maintaining the charge separation effects. This report offers novel avenues for exploring grain boundary effects in CdTe-based solar cells by fabricating controlled bicrystal interfaces and systematic atomic-scale analysis.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Atomic and electronic structure of the Si(331)-(12 x 1) surface
    Zhachuk, Ruslan
    Coutinho, Jose
    Palotas, Krisztian
    JOURNAL OF CHEMICAL PHYSICS, 2018, 149 (20):
  • [22] Electronic Structure and External Electric Field Modulation of Polyethylene/Graphene Interface
    Li, Hongfei
    Qu, Zhaoming
    Chen, Yazhou
    Zhou, Linsen
    Wang, Yan
    POLYMERS, 2022, 14 (14)
  • [23] Stability, atomic dynamics, and thermal destruction of the d metal/graphene interface structure
    Polukhin V.A.
    Kurbanova E.D.
    Mitrofanova N.S.
    Russian Metallurgy (Metally), 2017, 2017 (02) : 116 - 126
  • [24] Interface atomic structure of LaCuOSe:Mg epitaxial thin film and MgO substrate
    Tohei, Tetsuya
    Mizoguchi, Teruyasu
    Hiramatsu, Hidenori
    Hosono, Hideo
    Ikuhara, Yuichi
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2010, 173 (1-3): : 229 - 233
  • [25] Directly Determining the Interface Structure and Band Offset of a Large-Lattice-Mismatched CdS/CdTe Heterostructure
    Tang, Quanyin
    Yang, Ji-Hui
    Liu, Zhi-Pan
    Gong, Xin-Gao
    CHINESE PHYSICS LETTERS, 2020, 37 (09)
  • [26] Impact of intrinsic atomic defects on the electronic structure of MoS2 monolayers
    Santosh, K. C.
    Longo, Roberto C.
    Addou, Rafik
    Wallace, Robert M.
    Cho, Kyeongjae
    NANOTECHNOLOGY, 2014, 25 (37)
  • [27] Atomic and electronic structure of hydrogen-related centers in hydrogen storage materials
    Van de Walle, Chris G.
    Peles, A.
    Janotti, A.
    Wilson-Short, G. B.
    PHYSICA B-CONDENSED MATTER, 2009, 404 (5-7) : 793 - 797
  • [28] Atomic Gradient Structure Alters Electronic Structure in 3D across the Bulk and Enhances Photoactivity
    Ren, Peng
    Lu, Zexi
    Song, Miao
    Lee, Jaewon
    Zheng, Jian
    Sushko, Peter, V
    Li, Dongsheng
    ADVANCED ENERGY MATERIALS, 2021, 11 (13)
  • [29] Density functional calculations on atomic and electronic structures of amorphous HfO2/Si(001) interface
    Chen, G. H.
    Hou, Z. F.
    Gong, X. G.
    APPLIED PHYSICS LETTERS, 2009, 95 (10)
  • [30] First-principles calculations of (001)a-Al//(001)?' interface in Al-Cu alloys: Atomic structure, bonding strength, stability and electronic properties
    Chen, Xiangkai
    Chen, Xiaohua
    Wang, Zidong
    Yang, Jian
    Chen, Kaixuan
    Wang, Yanlin
    COMPUTATIONAL MATERIALS SCIENCE, 2022, 210