Decomposing Complete Equipartite Graphs into Short Even Cycles

被引:7
作者
Smith, Benjamin R. [1 ]
Cavenagh, Nicholas J. [2 ]
机构
[1] Koc Univ, Dept Math, TR-34450 Istanbul, Turkey
[2] Univ Waikato, Dept Math, Hamilton, New Zealand
关键词
graph decomposition; cycle; complete equipartite graph; OBERWOLFACH PROBLEM; PATH;
D O I
10.1002/jcd.20265
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we find necessary and sufficient conditions to decompose a complete equipartite graph into cycles of uniform length, in the case that the length is both even and short relative to the number of parts. (C) 2010 Wiley Periodicals, Inc. J Combin Designs 19: 131-143, 2011
引用
收藏
页码:131 / 143
页数:13
相关论文
共 20 条
[1]   Cycle decompositions of Kn and Kn-I [J].
Alspach, B ;
Gavlas, H .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 81 (01) :77-99
[2]   Path and cycle decompositions of complete equipartite graphs: 3 and 5 parts [J].
Billington, Elizabeth J. ;
Cavenagh, Nicholas J. ;
Smith, Benjamin R. .
DISCRETE MATHEMATICS, 2010, 310 (02) :241-254
[3]   Path and cycle decompositions of complete equipartite graphs: Four parts [J].
Billington, Elizabeth J. ;
Cavenagh, Nicholas J. ;
Smith, Benjamin R. .
DISCRETE MATHEMATICS, 2009, 309 (10) :3061-3073
[4]  
BRYANT D, 2010, J COMBIN DE IN PRESS
[5]   An asymptotic solution to the cycle decomposition problem for complete graphs [J].
Bryant, Darryn ;
Horsley, Daniel .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2010, 117 (08) :1258-1284
[6]   Decompositions of complete graphs into long cycles [J].
Bryant, Darryn ;
Horsley, Daniel .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 :927-934
[7]  
Cavenagh, 1998, AUSTRALAS J COMBIN, V18, P193
[8]   Decompositions of complete multipartite graphs into cycles of even length [J].
Cavenagh, NJ ;
Billington, EJ .
GRAPHS AND COMBINATORICS, 2000, 16 (01) :49-65
[9]  
CAVENAGH NJ, ELECT J COM IN PRESS
[10]  
Laskar R., 1978, Combinatorics: Fifth Hungarian Colloquium, Keszthely, Hungary, June/July 1976, VVolume 2, P705