Long-Term Organic-Inorganic Fertilization Regimes Alter Bacterial and Fungal Communities and Rice Yields in Paddy Soil

被引:18
|
作者
Ma, Tengfei [1 ]
He, Xiaohui [1 ]
Chen, Shanguo [1 ]
Li, Yujia [1 ]
Huang, Qiwei [1 ]
Xue, Chao [1 ,2 ]
Shen, Qirong [1 ]
机构
[1] Nanjing Agr Univ, Jiangsu Collaborat Innovat Ctr Solid Organ Wastes, Educ Minist Engn Ctr Resource Saving Fertilizers, Jiangsu Prov Key Lab Organ Solid Waste Utilizat, Nanjing, Peoples R China
[2] Sinong Bioorgan Fertilizer Inst, Key Lab Green Intelligent Fertilizer Innovat MARD, Nanjing, Peoples R China
基金
中国博士后科学基金;
关键词
fertilization regimes; soil biological fertility; co-occurrence network; microbial community; rice; MICROBIAL COMMUNITIES; NITROGEN-FERTILIZATION; ARABLE SOIL; DIVERSITY; MANAGEMENT; FIELD; IDENTIFICATION; PRODUCTIVITY; BIODIVERSITY; DATABASE;
D O I
10.3389/fmicb.2022.890712
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Microorganisms are the most abundant and diverse organisms in soils and have important effects on soil fertility. In this study, effects of the long-term fertilization treatments no fertilizer (CK), chemical fertilizer (nitrogen-phosphorus-potassium (NPK)), and organic-inorganic fertilizer (NPK and organic fertilizer (NPKM)) on rice yield and soil bacterial and fungal community diversity, structure, composition, and interaction networks were evaluated. Of the three treatments, the highest rice yield was in NPKM. Bacterial richness was significantly higher in NPKM than in NPK. Fertilization treatment significantly altered beta diversity of communities, species composition of bacterial and fungal communities, and structure of soil microbial networks. The most complex bacterial and fungal interaction co-occurrence network with the highest average degree and numbers of edges and nodes was in NPKM. Relative abundance of the plant growth-promoting fungus Trichoderma increased significantly in NPKM compared with CK and NPK. The results of the study indicate that bacterial richness and microbial community member interactions (network complexity) might be suitable indicators of soil biological fertility. This research provides new insights on the effects of different fertilization regimes on responses of soil bacterial and fungal communities and their contributions to crop yield. New indicators such as bacterial richness and complexity of microbial interaction networks are also identified that can be used to evaluate soil biological fertility.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Impacts of inorganic and organic fertilization treatments on bacterial and fungal communities in a paddy soil
    Wang, Jichen
    Song, Yang
    Ma, Tengfei
    Raza, Waseem
    Li, Jing
    Howland, Jillian G.
    Huang, Qiwei
    Shen, Qirong
    APPLIED SOIL ECOLOGY, 2017, 112 : 42 - 50
  • [2] Effect of long-term fertilization on bacterial composition in rice paddy soil
    Minna Wu
    Hongling Qin
    Zhe Chen
    Jinshui Wu
    Wenxue Wei
    Biology and Fertility of Soils, 2011, 47 : 397 - 405
  • [3] Effect of long-term fertilization on bacterial composition in rice paddy soil
    Wu, Minna
    Qin, Hongling
    Chen, Zhe
    Wu, Jinshui
    Wei, Wenxue
    BIOLOGY AND FERTILITY OF SOILS, 2011, 47 (04) : 397 - 405
  • [4] Responses of soil fungal and bacterial communities to long-term organic and inorganic nitrogenous fertilizers in an alpine agriculture
    Fu, Gang
    He, Yongtao
    APPLIED SOIL ECOLOGY, 2024, 201
  • [5] Fungal communities and functions response to long-term fertilization in paddy soils
    Nie, San'an
    Lei, Xiumei
    Zhao, Lixia
    Brookes, Philip C.
    Wang, Fei
    Chen, Chengrong
    Yang, Wenhao
    Xing, Shihe
    APPLIED SOIL ECOLOGY, 2018, 130 : 251 - 258
  • [6] Long-Term Drought and Warming Alter Soil Bacterial and Fungal Communities in an Upland Heathland
    Seaton, Fiona M.
    Reinsch, Sabine
    Goodall, Tim
    White, Nicola
    Jones, Davey L.
    Griffiths, Robert I.
    Creer, Simon
    Smith, Andy
    Emmett, Bridget A.
    Robinson, David A.
    ECOSYSTEMS, 2022, 25 (06) : 1279 - 1294
  • [7] Long-Term Drought and Warming Alter Soil Bacterial and Fungal Communities in an Upland Heathland
    Fiona M. Seaton
    Sabine Reinsch
    Tim Goodall
    Nicola White
    Davey L. Jones
    Robert I. Griffiths
    Simon Creer
    Andy Smith
    Bridget A. Emmett
    David A. Robinson
    Ecosystems, 2022, 25 : 1279 - 1294
  • [8] Effects of organic and inorganic fertilization on soil bacterial and fungal microbial diversity in the Kabete long-term trial, Kenya
    Kamaa, Mary
    Mburu, Harrison
    Blanchart, Eric
    Chibole, Livingstone
    Chotte, Jean-Luc
    Kibunja, Catherine
    Lesueur, Didier
    BIOLOGY AND FERTILITY OF SOILS, 2011, 47 (03) : 315 - 321
  • [9] Effects of organic and inorganic fertilization on soil bacterial and fungal microbial diversity in the Kabete long-term trial, Kenya
    Mary Kamaa
    Harrison Mburu
    Eric Blanchart
    Livingstone Chibole
    Jean-Luc Chotte
    Catherine Kibunja
    Didier Lesueur
    Biology and Fertility of Soils, 2011, 47 : 315 - 321
  • [10] Long-term Fertilization Structures Bacterial and Archaeal Communities along Soil Depth Gradient in a Paddy Soil
    Gu, Yunfu
    Wang, Yingyan
    Lu, Sheng'e
    Xiang, Quanju
    Yu, Xiumei
    Zhao, Ke
    Zou, Likou
    Chen, Qiang
    Tu, Shihua
    Zhang, Xiaoping
    FRONTIERS IN MICROBIOLOGY, 2017, 8