OPTIMIZATION OF A CONTROL LAW TO SYNCHRONIZE MANIFOLDS BY A TRANSVERSE COMPONENT

被引:1
作者
Cafaro, Adolfo Damiano [1 ]
Fiori, Simone [2 ]
机构
[1] Univ Politecn Marche, Sch Informat & Automat Engn, Via Brecce Bianche, I-60131 Ancona, Italy
[2] Univ Politecn Marche, Dipartimento Ingn Informaz, Via Brecce Bianche, I-60131 Ancona, Italy
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2022年 / 27卷 / 07期
关键词
Riemannian manifold; exponential-speed synchronization; optimization problem; control effort; First-order autonomous oscillator; EXPONENTIAL SYNCHRONIZATION; NONLINEAR-SYSTEMS; NEURAL-NETWORKS; COMPLEX; CHAOS;
D O I
10.3934/dcdsb.2021213
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present paper builds on the previous contribution by the second author, S. Fiori, Synchronization of first-order autonomous oscillators on Riemannian manifolds, Discrete and Continuous Dynamical Systems - Series B, Vol. 24, No. 4, pp. 1725 - 1741, April 2019. The aim of the present paper is to optimize a previously-developed control law to achieve synchronization of first order non-linear oscillators whose state evolves on a Riemannian manifold. The optimization of such control law has been achieved by introducing a transverse control field, which guarantees reduced control effort without affecting the synchronization speed of the oscillators. The developed non-linear control theory has been analyzed from a theoretical point of view as well as through a comprehensive series of numerical experiments.
引用
收藏
页码:3947 / 3969
页数:23
相关论文
共 39 条
  • [21] Synchronization of MEMS resonators and mechanical neurocomputing
    Hoppensteadt, FC
    Izhikevich, EM
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2001, 48 (02) : 133 - 138
  • [22] Hu A., 2003, P 2 ACM INT C WIRELE, P1, DOI DOI 10.1007/978-1-4757-3775-2
  • [23] Khan A., 2019, INT J DYN CONTROL, V7, P536
  • [24] Control and Synchronization of Neuron Ensembles
    Li, Jr-Shin
    Dasanayake, Isuru
    Ruths, Justin
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (08) : 1919 - 1930
  • [25] Impulsive controller design for exponential synchronization of chaotic neural networks with mixed delays
    Li, Xiaodi
    Rakkiyappan, R.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (06) : 1515 - 1523
  • [26] Complete synchronization of chaotic complex nonlinear systems with uncertain parameters
    Mahmoud, Gamal M.
    Mahmoud, Emad E.
    [J]. NONLINEAR DYNAMICS, 2010, 62 (04) : 875 - 882
  • [27] Marsden JE., 2012, MANIFOLDS TENSOR ANA
  • [28] Master-slave robotic platform and its feasibility study for micro-neurosurgery
    Mitsuishi, Mamoru
    Morita, Akio
    Sugita, Naohiko
    Sora, Shigeo
    Mochizuki, Ryo
    Tanimoto, Keiji
    Baek, Young Min
    Takahashi, Hiroki
    Harada, Kanako
    [J]. INTERNATIONAL JOURNAL OF MEDICAL ROBOTICS AND COMPUTER ASSISTED SURGERY, 2013, 9 (02) : 180 - 189
  • [29] Complex dynamics and synchronization of delayed-feedback nonlinear oscillators
    Murphy, Thomas E.
    Cohen, Adam B.
    Ravoori, Bhargava
    Schmitt, Karl R. B.
    Setty, Anurag V.
    Sorrentino, Francesco
    Williams, Caitlin R. S.
    Ott, Edward
    Roy, Rajarshi
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 368 (1911): : 343 - 366
  • [30] Predictive synchronization of chaotic satellites systems
    Sadaoui, Djaouida
    Boukabou, Abdelkrim
    Merabtine, Nadjim
    Benslama, Malek
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (07) : 9041 - 9045