OPTIMIZATION OF A CONTROL LAW TO SYNCHRONIZE MANIFOLDS BY A TRANSVERSE COMPONENT

被引:1
作者
Cafaro, Adolfo Damiano [1 ]
Fiori, Simone [2 ]
机构
[1] Univ Politecn Marche, Sch Informat & Automat Engn, Via Brecce Bianche, I-60131 Ancona, Italy
[2] Univ Politecn Marche, Dipartimento Ingn Informaz, Via Brecce Bianche, I-60131 Ancona, Italy
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2022年 / 27卷 / 07期
关键词
Riemannian manifold; exponential-speed synchronization; optimization problem; control effort; First-order autonomous oscillator; EXPONENTIAL SYNCHRONIZATION; NONLINEAR-SYSTEMS; NEURAL-NETWORKS; COMPLEX; CHAOS;
D O I
10.3934/dcdsb.2021213
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present paper builds on the previous contribution by the second author, S. Fiori, Synchronization of first-order autonomous oscillators on Riemannian manifolds, Discrete and Continuous Dynamical Systems - Series B, Vol. 24, No. 4, pp. 1725 - 1741, April 2019. The aim of the present paper is to optimize a previously-developed control law to achieve synchronization of first order non-linear oscillators whose state evolves on a Riemannian manifold. The optimization of such control law has been achieved by introducing a transverse control field, which guarantees reduced control effort without affecting the synchronization speed of the oscillators. The developed non-linear control theory has been analyzed from a theoretical point of view as well as through a comprehensive series of numerical experiments.
引用
收藏
页码:3947 / 3969
页数:23
相关论文
共 39 条
  • [1] Statistical mechanics of complex networks
    Albert, R
    Barabási, AL
    [J]. REVIEWS OF MODERN PHYSICS, 2002, 74 (01) : 47 - 97
  • [2] Synchronization in complex networks
    Arenas, Alex
    Diaz-Guilera, Albert
    Kurths, Jurgen
    Moreno, Yamir
    Zhou, Changsong
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03): : 93 - 153
  • [3] Baek YM, 2010, P IEEE RAS-EMBS INT, P740, DOI 10.1109/BIOROB.2010.5625946
  • [4] The synchronization of chaotic systems
    Boccaletti, S
    Kurths, J
    Osipov, G
    Valladares, DL
    Zhou, CS
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2): : 1 - 101
  • [5] Bondhus AK, 2005, IEEE DECIS CONTR P, P7270
  • [6] Synchronization in a Pair of Thermally Coupled Rotating Baroclinic Annuli: Understanding Atmospheric Teleconnections in the Laboratory
    Castrejon-Pita, A. A.
    Read, P. L.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (20)
  • [7] SYNCHRONIZATION IN COUPLED STOCHASTIC SINE-GORDON WAVE MODEL
    Chueshov, Igor
    Kloeden, Peter E.
    Yang, Meihua
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (09): : 2969 - 2990
  • [8] State and parameter estimation in nonlinear systems as an optimal tracking problem
    Creveling, Daniel R.
    Gill, Philip E.
    Abarbanel, Henry D. I.
    [J]. PHYSICS LETTERS A, 2008, 372 (15) : 2640 - 2644
  • [9] SYNCHRONIZATION OF LORENZ-BASED CHAOTIC CIRCUITS WITH APPLICATIONS TO COMMUNICATIONS
    CUOMO, KM
    OPPENHEIM, AV
    STROGATZ, SH
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1993, 40 (10): : 626 - 633
  • [10] MASTER-SLAVE SYNCHRONIZATION OF NONAUTONOMOUS CHAOTIC SYSTEMS AND ITS APPLICATION TO ROTATING PENDULUMS
    Ding, Ke
    Han, Qing-Long
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (06):