Topological R-entropy and topological entropy of free semigroup actions

被引:3
作者
Zhu, Li [1 ]
Ma, Dongkui [1 ]
机构
[1] South China Univ Technol, Sch Math, Guangzhou 510641, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Topological r-entropy; Topological entropy; Free semigroup actions; Skew-product transformations;
D O I
10.1016/j.jmaa.2018.10.048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the notion of topological r-entropy for free semigroup actions on a compact metric space and provide some properties of it. By using the skew-product transformation as bridge, we get the following two main results. 1. We extend the result that the topological entropy is the limit of topological r-entropy in [15] to free semigroup actions (r -> 0). 2. Let f(i) i = 0, 1,.., m - 1, be homeomorphisms on a compact metric space. We verify that the topological entropy of f(0),..., f(m-1) equals the topological entropy of f(0)(-1),...,f(m-1)(-1) . (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1056 / 1069
页数:14
相关论文
共 50 条
[21]   TOPOLOGICAL ENTROPY, UPPER CARATHEODORY CAPACITY AND FRACTAL DIMENSIONS OF SEMIGROUP ACTIONS [J].
Bis, Andrzej ;
Dikranjan, Dikran ;
Giordano Bruno, Anna ;
Stoyanov, Luchezar .
COLLOQUIUM MATHEMATICUM, 2021, 163 (01) :131-151
[22]   The Upper Capacity Topological Entropy of Free Semigroup Actions for Certain Non-compact Sets [J].
Zhu, Li ;
Ma, Dongkui .
JOURNAL OF STATISTICAL PHYSICS, 2021, 182 (01)
[23]   The Upper Capacity Topological Entropy of Free Semigroup Actions for Certain Non-compact Sets [J].
Li Zhu ;
Dongkui Ma .
Journal of Statistical Physics, 2021, 182
[24]   Polynomial Entropy of Subsets for Free Semigroup Actions [J].
Liu, Lei ;
Zhao, Cao .
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2023, 29 (01) :229-243
[25]   The Upper Capacity Topological Entropy of Free Semigroup Actions for Certain Non-compact Sets, II [J].
Yanjie Tang ;
Xiaojiang Ye ;
Dongkui Ma .
Journal of Statistical Physics, 190
[26]   The Upper Capacity Topological Entropy of Free Semigroup Actions for Certain Non-compact Sets, II [J].
Tang, Yanjie ;
Ye, Xiaojiang ;
Ma, Dongkui .
JOURNAL OF STATISTICAL PHYSICS, 2023, 190 (04)
[27]   Entropy Points and Applications for Free Semigroup Actions [J].
Fagner B. Rodrigues ;
Thomas Jacobus ;
Marcus V. Silva .
Journal of Statistical Physics, 2022, 186
[28]   Polynomial Entropy of Subsets for Free Semigroup Actions [J].
Lei Liu ;
Cao Zhao .
Journal of Dynamical and Control Systems, 2023, 29 :229-243
[29]   Entropy Points and Applications for Free Semigroup Actions [J].
Rodrigues, Fagner B. ;
Jacobus, Thomas ;
Silva, Marcus, V .
JOURNAL OF STATISTICAL PHYSICS, 2022, 186 (01)
[30]   Topological unified (r, s)-entropy [J].
Kazemi, R. ;
Miri, M. R. ;
Borzadaran, G. R. Mohtashami .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 541