The maximum degree of a random graph

被引:17
|
作者
Riordan, O [1 ]
Selby, A
机构
[1] Univ Cambridge Trinity Coll, Cambridge CB2 1TQ, England
[2] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB2 1SB, England
来源
关键词
D O I
10.1017/S0963548300004491
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let 0 < p < 1, q = 1 - p and b be fixed and let G epsilon G(n,p) be a graph on n vertices where each pair of vertices is joined independently with probability p. We show that the probability that every vertex of G has degree at most pn + b root npq is equal to (c + o(1))(n), for c = c(b) the root of a certain equation. Surprisingly, c(0) = 0.6102... is greater than (1)/(2) and c(b) is independent of p. To obtain these results we consider the complete graph on n vertices with weights on the edges. Taking these weights as independent normal N(p,pq) random variables gives a 'continuous' approximation to G(n, p) whose degrees are much easier to analyse.
引用
收藏
页码:549 / 572
页数:24
相关论文
共 50 条
  • [1] On the maximum degree of a random planar graph
    McDiarmid, Colin
    Reed, Bruce
    COMBINATORICS PROBABILITY & COMPUTING, 2008, 17 (04): : 591 - 601
  • [2] THE DISTRIBUTION OF THE MAXIMUM DEGREE OF A RANDOM GRAPH
    BOLLOBAS, B
    DISCRETE MATHEMATICS, 1980, 32 (02) : 201 - 203
  • [3] RANDOM GRAPH PROCESSES WITH MAXIMUM DEGREE 2
    Rucinski, A.
    Wormald, N. C.
    ANNALS OF APPLIED PROBABILITY, 1997, 7 (01): : 183 - 199
  • [4] Decreasing the maximum degree of a graph
    Borg, Peter
    DISCRETE MATHEMATICS, 2022, 345 (11)
  • [5] A comparative power analysis of the maximum degree and size invariants for random graph inference
    Rukhin, Andrey
    Priebe, Carey E.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (02) : 1041 - 1046
  • [6] ON MAXIMUM DEGREE IN A RANDOM TREE
    MOON, JW
    MICHIGAN MATHEMATICAL JOURNAL, 1968, 15 (04) : 429 - &
  • [7] On domination parameters and maximum degree of a graph
    Karunagaram, Shanthi
    Joseph, J. Paulraj
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2006, 9 (02): : 215 - 223
  • [8] THE IRREDUNDANCE NUMBER AND MAXIMUM DEGREE OF A GRAPH
    BOLLOBAS, B
    COCKAYNE, EJ
    DISCRETE MATHEMATICS, 1984, 49 (02) : 197 - 199
  • [9] The maximum degree of random planar graphs
    Drmota, M.
    Gimenez, O.
    Noy, M.
    Panagiotou, K.
    Steger, A.
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 109 : 892 - 920
  • [10] RANDOM GRAPHS WITH A FIXED MAXIMUM DEGREE
    Frieze, Alan M.
    Tkocz, Tomasz
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (01) : 53 - 61