RISK-REWARD OPTIMIZATION WITH DISCRETE-TIME COHERENT RISK

被引:3
作者
Cherny, Alexander S. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Probabil Theory, Fac Mech & Math, Moscow 119992, Russia
关键词
conditionally Gaussian model; dynamic coherent risk measure; dynamic Weighted V@R; risk-reward optimization; CAPITAL ALLOCATION;
D O I
10.1111/j.1467-9965.2010.00412.x
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We solve the risk-reward optimization problem in the discrete-time setting, the reward being measured as the expected Profit and Loss and the risk being measured by a dynamic coherent risk measure.
引用
收藏
页码:571 / 595
页数:25
相关论文
共 31 条
[21]  
Frittelli M., 2004, Risk measures for the 21st century
[22]   Risk measures and capital requirements for processes [J].
Frittelli, Marco ;
Scandolo, Giacomo .
MATHEMATICAL FINANCE, 2006, 16 (04) :589-612
[23]   A note on semivariance [J].
Jin, HQ ;
Markowitz, H ;
Zhou, XY .
MATHEMATICAL FINANCE, 2006, 16 (01) :53-61
[24]  
Jobert A, 2008, MATH FINANC, V18, P1
[25]  
Markowitz H. M., 1991, PORTFOLIO SELECTION
[26]   PORTFOLIO SELECTION [J].
Markowitz, Harry .
JOURNAL OF FINANCE, 1952, 7 (01) :77-91
[27]   Dynamic coherent risk measures [J].
Riedel, F .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2004, 112 (02) :185-200
[28]  
Rockafellar R., 2000, Journal of risk, V2, P21, DOI [10.21314/JOR.2000.038, DOI 10.21314/JOR.2000.038]
[29]   Coherent acceptability measures in multiperiod models [J].
Roorda, B ;
Schumacher, JM ;
Engwerda, J .
MATHEMATICAL FINANCE, 2005, 15 (04) :589-612
[30]  
WANG S, 1995, INSUR MATH ECON, V17, P43, DOI 10.1016/0167-6687(95)91054-P