Towards an efficient anode material for Li-ion batteries: understanding the conversion mechanism of nickel hydroxy chloride with Li- ions

被引:41
|
作者
Lim, Sae Hoon [1 ]
Park, Gi Dae [1 ]
Jung, Dae Soo [2 ]
Lee, Jong-Heun [1 ]
Kang, Yun Chan [1 ]
机构
[1] Korea Univ, Dept Mat Sci & Engn, Seoul 136713, South Korea
[2] Korea Inst Ceram Engn & Technol, Energy & Environm Div, Jinju 660031, South Korea
基金
新加坡国家研究基金会;
关键词
GRAPHENE OXIDE COMPOSITE; SUPERIOR LITHIUM STORAGE; PERFORMANCE; METAL; MICROSPHERES; NANOSHEETS; ELECTRODE; XPS; DECOMPOSITION; CYCLABILITY;
D O I
10.1039/c9ta12321k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Heterostructured nanocomposites comprising transition metal compounds (TMCs) with different bandgaps are attractive due to their excellent electrochemical performances. Candidates that combine various cations and anions are actively researched. Herein, it is demonstrated for the first time that nickel hydroxy chloride, once transformed into a heterostructured nanocomposite during the initial cycle, can be used as a new anode material for lithium-ion storage. In particular, the reaction mechanism for lithium-ion storage with a metal hydroxy chloride as the anode is demonstrated through various analyses for the first time. The model compound, nickel hydroxy chloride (Ni(OH)Cl), prepared by a one-pot hydrothermal method, is used to investigate the detailed conversion mechanism in Li-ion storage. Through systemically analyzed results, it is demonstrated that Ni(OH)Cl is transformed into Ni(OH)(2) and NiCl2 after one cycle and that the layered Ni(OH)(2)/NiCl2 nanocomposite heterointerface reacts with Li ions from the second cycle onward. Flower-like Ni(OH)Cl microspheres display extremely high and stable cycling performance (1236 mA h g(-1) for the 150th cycle at a current density of 0.2 A g(-1)) and outstanding rate capability (232 mA h g(-1)) at an extremely high current density of 30 A g(-1).
引用
收藏
页码:1939 / 1946
页数:8
相关论文
共 50 条
  • [31] Novel spherical microporous carbon as anode material for Li-ion batteries
    Wang, Q
    Li, H
    Chen, LQ
    Huang, XJ
    SOLID STATE IONICS, 2002, 152 : 43 - 50
  • [32] Synthesis of nanosized Si composite anode material for Li-ion batteries
    Xiangming He
    Weihua Pu
    Jianguo Ren
    Li Wang
    Changyin Jiang
    Chunrong Wan
    Ionics, 2007, 13 : 51 - 54
  • [33] Porous Silicon Nanotube Arrays as Anode Material for Li-Ion Batteries
    Tesfaye, Alexander T.
    Gonzalez, Roberto
    Coffer, Jeffery L.
    Djenizian, Thierry
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (37) : 20495 - 20498
  • [34] Progress on Li3VO4 as a Promising Anode Material for Li-ion Batteries
    Mo, Jun
    Zhang, Xiumei
    Liu, Junjie
    Yu, Jingang
    Wang, Zhian
    Liu, Zaichun
    Yuan, Xinhai
    Zhou, Chunjiao
    Li, Ruilian
    Wu, Xiongwei
    Wu, Yuping
    CHINESE JOURNAL OF CHEMISTRY, 2017, 35 (12) : 1789 - 1796
  • [35] The insertion mechanism of lithium into Mg2Si anode material for Li-ion batteries
    Kim, H
    Choi, J
    Sohn, HJ
    Kang, T
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (12) : 4401 - 4405
  • [36] Stabilization of Silicon Anode for Li-Ion Batteries
    Xiao, Jie
    Xu, Wu
    Wang, Deyu
    Choi, Daiwon
    Wang, Wei
    Li, Xiaolin
    Graff, Gordon L.
    Liu, Jun
    Zhang, Ji-Guang
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (10) : A1047 - A1051
  • [37] Nanostructured anode materials for Li-ion batteries
    Zhao, Nahong
    Fu, Lijun
    Yang, Lichun
    Zhang, Tao
    Wang, Gaojun
    Wu, Yuping
    van Ree, Teunis
    PURE AND APPLIED CHEMISTRY, 2008, 80 (11) : 2283 - 2295
  • [38] Nanocomposite anode materials for Li-ion batteries
    Wada, M
    Yin, J
    Tanabe, E
    Kitano, Y
    Tanase, S
    Kajita, O
    Sakai, T
    ELECTROCHEMISTRY, 2003, 71 (12) : 1064 - 1066
  • [39] Composite anode materials for Li-ion batteries
    Wen, Zhaoyin
    Yang, Xuefin
    Huang, Shahua
    JOURNAL OF POWER SOURCES, 2007, 174 (02) : 1041 - 1045
  • [40] Exploring the intercalation chemistry and Li ion dynamics in Li4WO5: An anode material for Li-ion batteries
    Bharathi, K. Kamala
    Ponraj, Rubha
    Yun, Jong Hyuk
    Kim, Do Kyung
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 947