Towards an efficient anode material for Li-ion batteries: understanding the conversion mechanism of nickel hydroxy chloride with Li- ions

被引:41
|
作者
Lim, Sae Hoon [1 ]
Park, Gi Dae [1 ]
Jung, Dae Soo [2 ]
Lee, Jong-Heun [1 ]
Kang, Yun Chan [1 ]
机构
[1] Korea Univ, Dept Mat Sci & Engn, Seoul 136713, South Korea
[2] Korea Inst Ceram Engn & Technol, Energy & Environm Div, Jinju 660031, South Korea
基金
新加坡国家研究基金会;
关键词
GRAPHENE OXIDE COMPOSITE; SUPERIOR LITHIUM STORAGE; PERFORMANCE; METAL; MICROSPHERES; NANOSHEETS; ELECTRODE; XPS; DECOMPOSITION; CYCLABILITY;
D O I
10.1039/c9ta12321k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Heterostructured nanocomposites comprising transition metal compounds (TMCs) with different bandgaps are attractive due to their excellent electrochemical performances. Candidates that combine various cations and anions are actively researched. Herein, it is demonstrated for the first time that nickel hydroxy chloride, once transformed into a heterostructured nanocomposite during the initial cycle, can be used as a new anode material for lithium-ion storage. In particular, the reaction mechanism for lithium-ion storage with a metal hydroxy chloride as the anode is demonstrated through various analyses for the first time. The model compound, nickel hydroxy chloride (Ni(OH)Cl), prepared by a one-pot hydrothermal method, is used to investigate the detailed conversion mechanism in Li-ion storage. Through systemically analyzed results, it is demonstrated that Ni(OH)Cl is transformed into Ni(OH)(2) and NiCl2 after one cycle and that the layered Ni(OH)(2)/NiCl2 nanocomposite heterointerface reacts with Li ions from the second cycle onward. Flower-like Ni(OH)Cl microspheres display extremely high and stable cycling performance (1236 mA h g(-1) for the 150th cycle at a current density of 0.2 A g(-1)) and outstanding rate capability (232 mA h g(-1)) at an extremely high current density of 30 A g(-1).
引用
收藏
页码:1939 / 1946
页数:8
相关论文
共 50 条
  • [1] Investigation of cobalt hydroxysulfide as a new anode material for Li-ion batteries and its conversion reaction mechanism with Li-ions
    Lim, Sae Hoon
    Park, Gi Dae
    Kang, Yun Chan
    CHEMICAL ENGINEERING JOURNAL, 2020, 401
  • [2] Silicon nitride as anode material for Li-ion batteries: Understanding the SiNx conversion reaction
    Ulvestad, Asbjorn
    Mxhlen, Jan Petter
    Kirkengen, Martin
    JOURNAL OF POWER SOURCES, 2018, 399 : 414 - 421
  • [3] Silicon as anode material for Li-ion batteries
    Ozanam, Francois
    Rosso, Michel
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2016, 213 : 2 - 11
  • [4] Modification of graphite anode for Li-ion batteries by sodium chloride
    Zhou You-Yuan
    Li Xin-Hai
    Guo Hua-Jun
    Wang Zhi-Xing
    Yang Yong
    Zhu Wen-Ming
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2007, 23 (02) : 353 - 356
  • [5] Understanding the Degradation Mechanism of Lithium Nickel Oxide Cathodes for Li-Ion Batteries
    Xu, Jing
    Hu, Enyuan
    Nordlund, Dennis
    Mehta, Apurva
    Ehrlich, Steven N.
    Yang, Xiao-Qing
    Tong, Wei
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (46) : 31677 - 31683
  • [6] NbSb2 as an anode material for Li-ion batteries
    Reddy, M. Anji
    Varadaraju, U. V.
    JOURNAL OF POWER SOURCES, 2006, 159 (01) : 336 - 339
  • [7] Nanostructured Silicon as Potential Anode Material for Li-Ion Batteries
    Raic, Matea
    Mikac, Lara
    Maric, Ivan
    Stefanic, Goran
    Skrabic, Marko
    Gotic, Marijan
    Ivanda, Mile
    MOLECULES, 2020, 25 (04):
  • [8] Strontium Stannate as an Alternative Anode Material for Li-Ion Batteries
    Zulueta, Yohandys A.
    Mut, Rafael
    Kaya, Savas
    Dawson, James A.
    Minh Tho Nguyen
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (27): : 14947 - 14956
  • [9] The potential application of phosphorene as an anode material in Li-ion batteries
    Zhao, Shijun
    Kang, Wei
    Xue, Jianming
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (44) : 19046 - 19052
  • [10] Amorphous silicon as a possible anode material for Li-ion batteries
    Bourderau, S
    Brousse, T
    Schleich, DM
    JOURNAL OF POWER SOURCES, 1999, 81 : 233 - 236