The cubic congruence x3+ax2+bx+c ≡ 0(mod p) and binary quadratic forms F(x, y) = ax2+bxy+cy2

被引:0
作者
Tekcan, Ahmet [1 ]
机构
[1] Uludag Univ, Fac Sci, Dept Math, TR-16059 Gorukle, Bursa, Turkey
关键词
binary quadratic form; cubic congruence; cubic residue; representation of primes by binary quadratic forms;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F(x,y) ax(2) + bxy + cy(2) be a binary quadratic form of discriminant Delta = b(2) - 4ac for a, b, c is an element of Z, let p be a prime number and let F-p be a finite field. In this paper we formulate the number of integer solutions of cubic congruence x(3) + ax(2) + bx + c equivalent to 0 (mod p) over Fp for two specific binary quadratic forms F-1(k) (x, y) = x(2) + kxy + ky(2) and F-2(k) (x, y) = kx(2) + kxy + k(2) y(2) for integer k such that 1 <= k <= 9. Later we consider representation of primes by F-1(k) and F-2(k).
引用
收藏
页码:257 / 269
页数:13
相关论文
共 20 条
[1]  
[Anonymous], 1964, TRANSL MATH MONOGR
[2]  
BOURBAKI N, 1972, HIST NOTE COMMUTATIV
[3]   A GENERALIZATION OF VORONOI UNIT ALGORITHM .1. [J].
BUCHMANN, J .
JOURNAL OF NUMBER THEORY, 1985, 20 (02) :177-191
[4]  
BUCHMANN J, UNPUB ALGORITHMS BIN
[5]  
BUELL DA, 1989, BINARY QUADRATIC FOR
[6]  
CHRISTOFFERSON S, 1962, REPRESENTATION INTEG
[7]  
Cox D.A, 1989, FERMAT CLASS FIELD T
[8]   Small solutions of additive cubic congruences [J].
Dietmann, R .
ARCHIV DER MATHEMATIK, 2000, 75 (03) :195-197
[9]  
Edwards HaroldM., 1977, Fermat's Last Theorem: A Genetic Introcution to Algebraic Number Theory
[10]  
Flath D. E., 1989, INTRO NUMBER THEORY