A Gaussian derivative-based transform

被引:17
作者
Bloom, JA
Reed, TR
机构
[1] Department of Electrical and Computer Engineering, University of California, Davis
关键词
D O I
10.1109/83.491330
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This correspondence describes a new image transform that decomposes an image using a set of Gaussian derivatives. The basis functions themselves have been shown to effectively model the measured receptive fields of simple cells in the mammalian visual cortex, Based on these functions, it can be expected that this transform can provide a mechanism for exploiting the properties of the human visual system in image processing algorithms.
引用
收藏
页码:551 / 553
页数:3
相关论文
共 8 条
[1]   GABOR EXPANSION OF A SIGNAL INTO GAUSSIAN ELEMENTARY SIGNALS [J].
BASTIAANS, MJ .
PROCEEDINGS OF THE IEEE, 1980, 68 (04) :538-539
[2]   COMPLETE DISCRETE 2-D GABOR TRANSFORMS BY NEURAL NETWORKS FOR IMAGE-ANALYSIS AND COMPRESSION [J].
DAUGMAN, JG .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1988, 36 (07) :1169-1179
[3]   GABOR PHASE IN TEXTURE-DISCRIMINATION [J].
DUBUF, JMH .
SIGNAL PROCESSING, 1990, 21 (03) :221-240
[4]  
EBRAHIMI T, 1990, SPIE P VCIP, V90, P489
[5]   THE HERMITE TRANSFORM-THEORY [J].
MARTENS, JB .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1990, 38 (09) :1595-1606
[6]  
SOOHOO AE, 1994, SOC INFORM DISPLAY D, V25, P641
[7]  
YOUNG R A, 1987, Spatial Vision, V2, P273, DOI 10.1163/156856887X00222
[8]  
YOUNG RA, 1991, P SOC PHOTO-OPT INS, V1453, P92, DOI 10.1117/12.44348