Phenomenological theory of electro-osmotic effect and water management in polymer electrolyte proton-conducting membranes

被引:239
作者
Eikerling, M
Kharkats, YI
Kornyshev, AA
Volfkovich, YM
机构
[1] Forschungszentrum Julich, Inst Werkstoffe & Verfahren Energietech, D-52425 Julich, Germany
[2] Russian Acad Sci, AN Frumkin Electrochem Inst, Moscow 117071, Russia
关键词
D O I
10.1149/1.1838700
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Partial dehydration of the proton-conducting membrane under working conditions is one of the major problems in low-temperature fuel cell technology. In this paper a model, which accounts for the electro-osmotically induced drag of water from anode to cathode and the counterflow in a hydraulic pressure gradient is proposed. A balance of these flows determines a gradient: of water content across the membrane, which causes a decline of the current-voltage performance. Phenomenological transport equations coupled with the capillary pressure isotherm are used, involving the conductivity, permeability. and electro-osmotic drag coefficients dependent on the local water content. The effects of membrane parameters on current-voltage performance are investigated. A.universal feature of the obtained current-voltage plots is the existence of a critical current at which the potential drop across the membrane increases dramatically due to the dehydration of membrane layers close to the anode. For a membrane with zero residual conductivity in its dry parts, the critical current is a limiting current. Well below the critical current the effect of dehydration is negligible and the current-voltage plot obeys Ohm's law. The shape of the capillary pressure isotherm determines the nonohmic corrections. A comparison of the results of this study to those of the pertinent diffusion-type models reveals qualitatively different features, the convection model is found to be closer to experimental observations.
引用
收藏
页码:2684 / 2699
页数:16
相关论文
共 51 条
[1]  
[Anonymous], 1972, [No title captured], Patent No. 3684747
[2]  
[Anonymous], 1979, POROUS MEDIA, DOI DOI 10.1016/B978-0-12-223650-1.X5001-3
[3]   A MATHEMATICAL-MODEL OF THE SOLID-POLYMER-ELECTROLYTE FUEL-CELL [J].
BERNARDI, DM ;
VERBRUGGE, MW .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (09) :2477-2491
[4]   Oxygen and hydrogen permeation properties and water uptake of Nafion(R) 117 membrane and recast film for PEM fuel cell [J].
Broka, K ;
Ekdunge, P .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1997, 27 (02) :117-123
[5]   In-situ resistance measurements of Nafion(R) 117 membranes in polymer electrolyte fuel cells [J].
Buchi, FN ;
Scherer, GG .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1996, 404 (01) :37-43
[6]   CONDUCTANCE OF NAFION-117 MEMBRANES AS A FUNCTION OF TEMPERATURE AND WATER-CONTENT [J].
CAPPADONIA, M ;
ERNING, JW ;
NIAKI, SMS ;
STIMMING, U .
SOLID STATE IONICS, 1995, 77 :65-69
[7]   PROTON CONDUCTION OF NAFION((R))-117 MEMBRANE BETWEEN 140 K AND ROOM-TEMPERATURE [J].
CAPPADONIA, M ;
ERNING, JW ;
STIMMING, U .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1994, 376 (1-2) :189-193
[8]  
Chizmadzhev Yu. A., 1971, MACROKINETICS PROCES
[9]  
CHURAEV NV, 1990, PHYSICAL CHEM MASS T, P53
[10]  
CISAR A, 1995, NEW MAT FUEL CELL SY, V1, P104