Wasserstein distance-based asymmetric adversarial domain adaptation in intelligent bearing fault diagnosis

被引:12
|
作者
Yu, Ying [1 ]
Zhao, Jun [1 ]
Tang, Tang [1 ]
Wang, Jingwei [1 ]
Chen, Ming [1 ]
Wu, Jie [1 ]
Wang, Liang [1 ]
机构
[1] Tongji Univ, Sch Mech Engn, Shanghai 201804, Peoples R China
关键词
fault diagnosis; domain adaptation; asymmetric mapping; Wasserstein distance; lightweight architecture; CONVOLUTIONAL NEURAL-NETWORK; NOISY ENVIRONMENT; MACHINERY;
D O I
10.1088/1361-6501/ac0a0c
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Addressing the phenomenon of data sparsity in hostile working conditions, which leads to performance degradation in traditional machine learning-based fault diagnosis methods, a novel Wasserstein distance-based asymmetric adversarial domain adaptation is proposed for unsupervised domain adaptation in bearing fault diagnosis. A generative adversarial network-based loss and asymmetric mapping are integrated to alleviate the difficulty of the training process in adversarial transfer learning, especially when the domain shift is serious. Moreover, a simplified lightweight architecture is introduced to enhance the generalization and representation capability and reduce the computational cost. Experimental results show that our method not only achieves outstanding performance with sufficient data, but also outperforms these prominent adversarial methods with limited data (both source and target domain), which provides a promising approach to real industrial bearing fault diagnosis.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Bearing fault diagnosis based on deep dynamic domain adaptation
    Wang J.
    Lei W.
    Liu H.
    Wei L.
    Han D.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2023, 42 (14): : 245 - 250
  • [42] Bearing fault diagnosis model based on class domain adaptation
    Zhang Y.
    Zhang C.
    Lu B.
    Ding C.
    Li P.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2023, 42 (24): : 117 - 126
  • [43] Adversarial domain adaptation based on contrastive learning for bearings fault diagnosis
    Pan, Xiaolei
    Chen, Hongxiao
    Wang, Wei
    Su, Xiaoyan
    SIMULATION MODELLING PRACTICE AND THEORY, 2025, 139
  • [44] Cross-domain intelligent fault diagnosis of rolling bearing based on distance metric transfer learning
    Zhou, Hongdi
    Huang, Tao
    Li, Xixing
    Zhong, Fei
    ADVANCES IN MECHANICAL ENGINEERING, 2022, 14 (11)
  • [45] Intelligent fault diagnosis method of rolling bearing based on multi-source domain fast adversarial network
    She, Daoming
    Zhang, Hongfei
    Wang, Hu
    Yan, Xiaoan
    Chen, Jin
    Li, Yaoming
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (05)
  • [46] Intelligent fault diagnosis scheme for rolling bearing based on domain adaptation in one dimensional feature matching
    Sun, Dengyun
    Meng, Zong
    Guan, Yang
    Liu, Jingbo
    Cao, Wei
    Fan, Fengjie
    APPLIED SOFT COMPUTING, 2023, 146
  • [47] Regularized Wasserstein Distance-Based Joint Distribution Adaptation Approach for Fault Detection Under Variable Working Conditions
    Yang, Dan
    Peng, Xin
    Su, Cheng
    Li, Linlin
    Cao, Zhixing
    Zhong, Weimin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 11
  • [48] Adversarial sliced Wasserstein domain adaptation networks
    Zhang, Yun
    Wang, Nianbin
    Cai, Shaobin
    IMAGE AND VISION COMPUTING, 2020, 102
  • [49] A Wasserstein gradient-penalty generative adversarial network with deep auto-encoder for bearing intelligent fault diagnosis
    Xiong, Xiong
    Jiang, Hongkai
    Li, Xingqiu
    Niu, Maogui
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2020, 31 (04)
  • [50] Deep domain adaptation with adversarial idea and coral alignment for transfer fault diagnosis of rolling bearing
    Li, Ranran
    Li, Shunming
    Xu, Kun
    Lu, Jiantao
    Teng, Guangrong
    Du, Jun
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (09)