Wasserstein distance-based asymmetric adversarial domain adaptation in intelligent bearing fault diagnosis

被引:13
|
作者
Yu, Ying [1 ]
Zhao, Jun [1 ]
Tang, Tang [1 ]
Wang, Jingwei [1 ]
Chen, Ming [1 ]
Wu, Jie [1 ]
Wang, Liang [1 ]
机构
[1] Tongji Univ, Sch Mech Engn, Shanghai 201804, Peoples R China
关键词
fault diagnosis; domain adaptation; asymmetric mapping; Wasserstein distance; lightweight architecture; CONVOLUTIONAL NEURAL-NETWORK; NOISY ENVIRONMENT; MACHINERY;
D O I
10.1088/1361-6501/ac0a0c
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Addressing the phenomenon of data sparsity in hostile working conditions, which leads to performance degradation in traditional machine learning-based fault diagnosis methods, a novel Wasserstein distance-based asymmetric adversarial domain adaptation is proposed for unsupervised domain adaptation in bearing fault diagnosis. A generative adversarial network-based loss and asymmetric mapping are integrated to alleviate the difficulty of the training process in adversarial transfer learning, especially when the domain shift is serious. Moreover, a simplified lightweight architecture is introduced to enhance the generalization and representation capability and reduce the computational cost. Experimental results show that our method not only achieves outstanding performance with sufficient data, but also outperforms these prominent adversarial methods with limited data (both source and target domain), which provides a promising approach to real industrial bearing fault diagnosis.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] A Stacked Auto-Encoder Based Partial Adversarial Domain Adaptation Model for Intelligent Fault Diagnosis of Rotating Machines
    Liu, Zhao-Hua
    Lu, Bi-Liang
    Wei, Hua-Liang
    Chen, Lei
    Li, Xiao-Hua
    Wang, Chang-Tong
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (10) : 6798 - 6809
  • [42] A new cross-domain approach for bearing fault diagnosis based on multiscale convolutional networks and adversarial subdomain adaptation
    Sun, Haibin
    Zhu, Weilong
    NONDESTRUCTIVE TESTING AND EVALUATION, 2025,
  • [43] Wasserstein distance based multi-scale adversarial domain adaptation method for remaining useful life prediction
    Huaitao Shi
    Chengzhuang Huang
    Xiaochen Zhang
    Jinbao Zhao
    Sihui Li
    Applied Intelligence, 2023, 53 : 3622 - 3637
  • [44] Supervised Contrastive Learning-Based Domain Adaptation Network for Intelligent Unsupervised Fault Diagnosis of Rolling Bearing
    Zhang, Yongchao
    Ren, Zhaohui
    Zhou, Shihua
    Feng, Ke
    Yu, Kun
    Liu, Zheng
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2022, 27 (06) : 5371 - 5380
  • [45] Adversarial Domain Adaptation With Dual Auxiliary Classifiers for Cross-Domain Open-Set Intelligent Fault Diagnosis
    Wang, Bo
    Zhang, Meng
    Xu, Hao
    Wang, Chao
    Yang, Wenglong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [46] A mixed adversarial adaptation network for intelligent fault diagnosis
    Jiao, Jinyang
    Zhao, Ming
    Lin, Jing
    Liang, Kaixuan
    Ding, Chuancang
    JOURNAL OF INTELLIGENT MANUFACTURING, 2022, 33 (08) : 2207 - 2222
  • [47] AFARN: Domain Adaptation for Intelligent Cross-Domain Bearing Fault Diagnosis in Nuclear Circulating Water Pump
    Cheng, Wei
    Liu, Xue
    Xing, Ji
    Chen, Xuefeng
    Ding, Baoqing
    Zhang, Rongyong
    Zhou, Kangning
    Huang, Qian
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (03) : 3229 - 3239
  • [48] Collaborative and Conditional Deep Adversarial Network for Intelligent Bearing Fault Diagnosis
    Xia, Yi
    Zhang, Chengzhi
    Ye, Qiang
    Lu, Yixiang
    Yang, Runyu
    Wu, Yuhui
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [49] Bearing fault diagnosis based on deep dynamic domain adaptation
    Wang J.
    Lei W.
    Liu H.
    Wei L.
    Han D.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2023, 42 (14): : 245 - 250
  • [50] A new method for intelligent fault diagnosis of machines based on unsupervised domain adaptation
    Lu, Nannan
    Xiao, Hanhan
    Sun, Yanjing
    Han, Min
    Wang, Yanfen
    NEUROCOMPUTING, 2021, 427 : 96 - 109