Wasserstein distance-based asymmetric adversarial domain adaptation in intelligent bearing fault diagnosis

被引:13
|
作者
Yu, Ying [1 ]
Zhao, Jun [1 ]
Tang, Tang [1 ]
Wang, Jingwei [1 ]
Chen, Ming [1 ]
Wu, Jie [1 ]
Wang, Liang [1 ]
机构
[1] Tongji Univ, Sch Mech Engn, Shanghai 201804, Peoples R China
关键词
fault diagnosis; domain adaptation; asymmetric mapping; Wasserstein distance; lightweight architecture; CONVOLUTIONAL NEURAL-NETWORK; NOISY ENVIRONMENT; MACHINERY;
D O I
10.1088/1361-6501/ac0a0c
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Addressing the phenomenon of data sparsity in hostile working conditions, which leads to performance degradation in traditional machine learning-based fault diagnosis methods, a novel Wasserstein distance-based asymmetric adversarial domain adaptation is proposed for unsupervised domain adaptation in bearing fault diagnosis. A generative adversarial network-based loss and asymmetric mapping are integrated to alleviate the difficulty of the training process in adversarial transfer learning, especially when the domain shift is serious. Moreover, a simplified lightweight architecture is introduced to enhance the generalization and representation capability and reduce the computational cost. Experimental results show that our method not only achieves outstanding performance with sufficient data, but also outperforms these prominent adversarial methods with limited data (both source and target domain), which provides a promising approach to real industrial bearing fault diagnosis.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Intelligent fault diagnosis scheme for rolling bearing based on domain adaptation in one dimensional feature matching
    Sun, Dengyun
    Meng, Zong
    Guan, Yang
    Liu, Jingbo
    Cao, Wei
    Fan, Fengjie
    APPLIED SOFT COMPUTING, 2023, 146
  • [32] Adversarial domain adaptation convolutional neural network for intelligent recognition of bearing faults
    Wu, Yaochun
    Zhao, Rongzhen
    Ma, Hongru
    He, Qiang
    Du, Shaohua
    Wu, Jie
    MEASUREMENT, 2022, 195
  • [33] Domain Adaptation With Multi-Adversarial Learning for Open-Set Cross-Domain Intelligent Bearing Fault Diagnosis
    Zhu, Zhixiao
    Chen, Guangyi
    Tang, Gang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [34] Domain Adaptation With Multi-Adversarial Learning for Open-Set Cross-Domain Intelligent Bearing Fault Diagnosis
    Zhu, Zhixiao
    Chen, Guangyi
    Tang, Gang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [35] Imbalance domain adaptation network with adversarial learning for fault diagnosis of rolling bearing
    Zhu, Hongqiu
    Huang, Ziyi
    Lu, Biliang
    Cheng, Fei
    Zhou, Can
    SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (08) : 2249 - 2257
  • [36] Deep multi-scale adversarial network with attention: A novel domain adaptation method for intelligent fault diagnosis*
    Zhao, Bo
    Zhang, Xianmin
    Zhan, Zhenhui
    Wu, Qiqiang
    JOURNAL OF MANUFACTURING SYSTEMS, 2021, 59 : 565 - 576
  • [37] Imbalance domain adaptation network with adversarial learning for fault diagnosis of rolling bearing
    Hongqiu Zhu
    Ziyi Huang
    Biliang Lu
    Fei Cheng
    Can Zhou
    Signal, Image and Video Processing, 2022, 16 : 2249 - 2257
  • [38] Digital twin-driven partial domain adaptation network for intelligent fault diagnosis of rolling bearing
    Zhang, Yongchao
    Ji, J. C.
    Ren, Zhaohui
    Ni, Qing
    Gu, Fengshou
    Feng, Ke
    Yu, Kun
    Ge, Jian
    Lei, Zihao
    Liu, Zheng
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 234
  • [39] Fault Diagnosis of Rotating Machinery Based on Wasserstein Distance and Feature Selection
    Ferracuti, Francesco
    Freddi, Alessandro
    Monteriu, Andrea
    Romeo, Luca
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2022, 19 (03) : 1997 - 2007
  • [40] Research on a Bearing Fault Diagnosis Method Based on an Improved Wasserstein Generative Adversarial Network
    Zhu, Chengshun
    Lin, Wei
    Zhang, Hongji
    Cao, Youren
    Fan, Qiming
    Zhang, Hui
    MACHINES, 2024, 12 (08)