Wasserstein distance-based asymmetric adversarial domain adaptation in intelligent bearing fault diagnosis

被引:12
|
作者
Yu, Ying [1 ]
Zhao, Jun [1 ]
Tang, Tang [1 ]
Wang, Jingwei [1 ]
Chen, Ming [1 ]
Wu, Jie [1 ]
Wang, Liang [1 ]
机构
[1] Tongji Univ, Sch Mech Engn, Shanghai 201804, Peoples R China
关键词
fault diagnosis; domain adaptation; asymmetric mapping; Wasserstein distance; lightweight architecture; CONVOLUTIONAL NEURAL-NETWORK; NOISY ENVIRONMENT; MACHINERY;
D O I
10.1088/1361-6501/ac0a0c
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Addressing the phenomenon of data sparsity in hostile working conditions, which leads to performance degradation in traditional machine learning-based fault diagnosis methods, a novel Wasserstein distance-based asymmetric adversarial domain adaptation is proposed for unsupervised domain adaptation in bearing fault diagnosis. A generative adversarial network-based loss and asymmetric mapping are integrated to alleviate the difficulty of the training process in adversarial transfer learning, especially when the domain shift is serious. Moreover, a simplified lightweight architecture is introduced to enhance the generalization and representation capability and reduce the computational cost. Experimental results show that our method not only achieves outstanding performance with sufficient data, but also outperforms these prominent adversarial methods with limited data (both source and target domain), which provides a promising approach to real industrial bearing fault diagnosis.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Wasserstein distance based deep adversarial transfer learning for intelligent fault diagnosis with unlabeled or insufficient labeled data
    Cheng, Cheng
    Zhou, Beitong
    Ma, Guijun
    Wu, Dongrui
    Yuan, Ye
    NEUROCOMPUTING, 2020, 409 (409) : 35 - 45
  • [22] Triplet Loss Guided Adversarial Domain Adaptation for Bearing Fault Diagnosis
    Wang, Xiaodong
    Liu, Feng
    SENSORS, 2020, 20 (01)
  • [23] An Unsupervised Domain Adaptation Method for Intelligent Bearing Fault Diagnosis Based on Signal Reconstruction by Cycle-Consistent Adversarial Learning
    Zhu, Wenying
    Shi, Boqiang
    Feng, Zhipeng
    Tang, Jiachen
    IEEE SENSORS JOURNAL, 2023, 23 (16) : 18477 - 18485
  • [24] Generalized Simulation-Based Domain Adaptation Approach for Intelligent Bearing Fault Diagnosis
    Nguyen, Thi Hue
    Hung, Vuong Viet
    Thinh, Dao Duc
    Tran, Thi Thao
    Hong, Hoang Si
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024, 49 (12) : 16941 - 16957
  • [25] Discrepant Adversarial Domain Adaptation Network for Rolling Bearing Intelligent Fault Diagnosis under Varying Working Condition
    Zheng, Kai
    Zhao, Pengyuan
    Xiong, Jinfeng
    Bai, Yin
    Li, Yongying
    Long, Zihao
    Zhang, Zheng
    ENGINEERING LETTERS, 2025, 33 (04) : 860 - 875
  • [26] Domain Adaptation With Multi-Adversarial Learning for Open-Set Cross-Domain Intelligent Bearing Fault Diagnosis
    Zhu, Zhixiao
    Chen, Guangyi
    Tang, Gang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [27] Domain Adaptation With Multi-Adversarial Learning for Open-Set Cross-Domain Intelligent Bearing Fault Diagnosis
    Zhu, Zhixiao
    Chen, Guangyi
    Tang, Gang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [28] Double-level adversarial domain adaptation network for intelligent fault diagnosis
    Jiao, Jinyang
    Lin, Jing
    Zhao, Ming
    Liang, Kaixuan
    KNOWLEDGE-BASED SYSTEMS, 2020, 205
  • [29] A Balanced Adversarial Domain Adaptation Method for Partial Transfer Intelligent Fault Diagnosis
    Wang, Yu
    Liu, Yanxu
    Chow, Tommy W. S.
    Gu, Junwei
    Zhang, Mingquan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [30] Imbalance domain adaptation network with adversarial learning for fault diagnosis of rolling bearing
    Zhu, Hongqiu
    Huang, Ziyi
    Lu, Biliang
    Cheng, Fei
    Zhou, Can
    SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (08) : 2249 - 2257