Impact of the Missing Data Pattern, the Oversampling, the Noise Level, and the Excitation on Nonparametric Frequency Response Function Estimates

被引:1
作者
Pintelon, R. [1 ]
Lataire, J. [1 ]
Vandersteen, G. [1 ]
Ugryumova, D. [2 ]
机构
[1] Vrije Univ Brussel, Dept ELEC, Pl Laan 2, B-1050 Brussels, Belgium
[2] Sioux LIME BV, NL-5633 AJ Eindhoven, Netherlands
来源
IFAC PAPERSONLINE | 2018年 / 51卷 / 15期
关键词
Frequency response function; missing data; nonparametric; MATRIX ESTIMATION; OUTPUT DATA; MODELS;
D O I
10.1016/j.ifacol.2018.09.063
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nonparametric frequency response function estimation (FRF) is a first important step towards successful parametric modelling of the dynamics. In some applications such as, for example, low-cost wireless sensor networks, sensors are subject to failure (clipping, outliers) and the transmission errors of the wireless communication can be as high as 30%. Hence, nonparametric estimation of the FRF in the presence of missing data is an important issue. In this paper we study the impact of the missing data pattern, the missing data fraction, the oversampling (w.r.t. the bandwidth of the system), the signal-to-noise ratio and the type of excitation on the bias and variance of the FRF estimates. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1002 / 1007
页数:6
相关论文
共 10 条