Soil organic carbon predictions in Subarctic Greenland by visible-near infrared spectroscopy

被引:10
|
作者
Ogric, M. [1 ,2 ]
Knadel, M. [3 ]
Kristiansen, S. M. [2 ]
Peng, Y. [3 ]
De Jonge, L. W. [3 ]
Adhikari, K. [4 ]
Greve, M. H. [3 ]
机构
[1] Univ Durham, Dept Geog, Sci Labs, Durham, England
[2] Aarhus Univ, Dept Geosci, Aarhus, Denmark
[3] Aarhus Univ, Dept Agroecol, Tjele, Denmark
[4] Univ Arkansas, Dept Crop Soil & Environm Sci, Fayetteville, AR 72701 USA
关键词
Soil organic carbon; visible-near-infrared spectroscopy; subarctic; Greenland; REFLECTANCE SPECTROSCOPY; NIR; VARIABILITY; LANDSCAPE; SPECTRA; MODELS; MATTER; REGRESSION; EROSION; SPIKING;
D O I
10.1080/15230430.2019.1679939
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Release of carbon from high-latitude soils to the atmosphere may have significant effects on Earth's climate. In this contribution, we evaluate visible-near-infrared spectroscopy (vis-NIRS) as a time- and cost-efficient tool for assessing soil organic carbon (SOC) concentrations in South Greenland. Soil samples were collected at two sites and analyzed with vis-NIRS. We used partial least square regression (PLS-R) modeling to predict SOC from vis-NIRS spectra referenced against in situ dry combustion measurements. The ability of our approach was validated in three setups: (1) calibration and validation data sets from the same location, (2) calibration and validation data sets from different locations, and (3) the same setup as in (2) with the calibration model enlarged with few samples from the opposite target area. Vis-NIRS predictions were successful in setup 1 (R-2 = 0.95, root mean square error of prediction [RMSEP] = 1.80 percent and R-2 = 0.82, RMSEP = 0.64 percent). Predictions in setup 2 had higher errors (R-2 = 0.90, RMSEP = 7.13 percent and R-2 = 0.78, RMSEP = 2.82 percent). In setup 3, the results were again improved (R-2 = 0.95, RMSEP = 2.03 percent and R-2 = 0.77, RMSEP = 2.14 percent). We conclude that vis-NIRS can obtain good results predicting SOC concentrations across two subarctic ecosystems, when the calibration models are augmented with few samples from the target site. Future efforts should be made toward determination of SOC stocks to constrain soil-atmosphere carbon exchange.
引用
收藏
页码:490 / 505
页数:16
相关论文
共 50 条
  • [21] Visible-Near-Infrared Spectroscopy Prediction of Soil Characteristics as Affected by Soil-Water Content
    Manage, Lashya P. Marakkala
    Greve, Mogens Humlekrog
    Knadel, Maria
    Moldrup, Per
    de Jonge, Lis W.
    Katuwal, Sheela
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2018, 82 (06) : 1333 - 1346
  • [22] Prediction of soil organic carbon in soil profiles based on visible-near-infrared hyperspectral imaging spectroscopy
    Liu, Shuyu
    Chen, Jiaying
    Guo, Long
    Wang, Junguang
    Zhou, Zefan
    Luo, Jingyi
    Yang, Ruiqing
    SOIL & TILLAGE RESEARCH, 2023, 232
  • [23] In situ and laboratory soil spectroscopy with portable visible-to-near-infrared and mid-infrared instruments for the assessment of organic carbon in soils
    Hutengs, Christopher
    Seidel, Michael
    Oertel, Felix
    Ludwig, Bernard
    Vohland, Michael
    GEODERMA, 2019, 355
  • [24] Organic matter prediction for Korean soils using visible-near infrared reflectance spectroscopy
    Chun, H. C.
    Hong, S. Y.
    Song, K. C.
    Kim, Y. H.
    Hyun, B. K.
    Minasny, B.
    DIGITAL SOIL ASSESSMENTS AND BEYOND, 2012, : 377 - 380
  • [25] Soil Texture and Organic Carbon Fractions Predicted from Near-Infrared Spectroscopy and Geostatistics
    Deiss, Leonardo
    Franzluebbers, Alan J.
    de Moraes, Anibal
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2017, 81 (05) : 1222 - 1234
  • [26] PREDICTING SOIL NITROGEN AND ORGANIC CARBON USING NEAR INFRARED SPECTROSCOPY COUPLED WITH VARIABLE SELECTION
    Jia, S.
    Zhang, J.
    Li, G.
    Yang, X.
    APPLIED ENGINEERING IN AGRICULTURE, 2014, 30 (04) : 641 - 647
  • [27] Analysis and Model Comparison of Carbon and Nitrogen Concentrations in Sediments of the Yellow Sea and Bohai Sea by Visible-Near Infrared Spectroscopy
    Qiu, Huimin
    Fan, Pingping
    Hou, Guangli
    Li, Xueying
    Wang, Yinglong
    BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY, 2022, 108 (06) : 1124 - 1131
  • [28] Prediction of soil organic carbon stock using visible and near infrared reflectance spectroscopy (VNIRS) in the field
    Cambou, Aurelie
    Cardinael, Remi
    Kouakoua, Ernest
    Villeneuve, Manon
    Durand, Celine
    Barthes, Bernard G.
    GEODERMA, 2016, 261 : 151 - 159
  • [29] Fusion of visible-to-near-infrared and mid-infrared spectroscopy to estimate soil organic carbon
    Hong, Yongsheng
    Munnaf, Muhammad Abdul
    Guerrero, Angela
    Chen, Songchao
    Liu, Yaolin
    Shi, Zhou
    Mouazen, Abdul Mounem
    SOIL & TILLAGE RESEARCH, 2022, 217
  • [30] Improved Soil Organic Carbon Prediction in a Forest Area by Near-Infrared Spectroscopy: Spiking of a Soil Spectral Library
    Long, Miao
    Yue, Tianxiang
    Xu, Zhe
    Guo, Jiaxin
    Luo, Jie
    Guo, Xi
    Zhao, Xiaomin
    FORESTS, 2023, 14 (01):