Soil organic carbon predictions in Subarctic Greenland by visible-near infrared spectroscopy

被引:10
|
作者
Ogric, M. [1 ,2 ]
Knadel, M. [3 ]
Kristiansen, S. M. [2 ]
Peng, Y. [3 ]
De Jonge, L. W. [3 ]
Adhikari, K. [4 ]
Greve, M. H. [3 ]
机构
[1] Univ Durham, Dept Geog, Sci Labs, Durham, England
[2] Aarhus Univ, Dept Geosci, Aarhus, Denmark
[3] Aarhus Univ, Dept Agroecol, Tjele, Denmark
[4] Univ Arkansas, Dept Crop Soil & Environm Sci, Fayetteville, AR 72701 USA
关键词
Soil organic carbon; visible-near-infrared spectroscopy; subarctic; Greenland; REFLECTANCE SPECTROSCOPY; NIR; VARIABILITY; LANDSCAPE; SPECTRA; MODELS; MATTER; REGRESSION; EROSION; SPIKING;
D O I
10.1080/15230430.2019.1679939
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Release of carbon from high-latitude soils to the atmosphere may have significant effects on Earth's climate. In this contribution, we evaluate visible-near-infrared spectroscopy (vis-NIRS) as a time- and cost-efficient tool for assessing soil organic carbon (SOC) concentrations in South Greenland. Soil samples were collected at two sites and analyzed with vis-NIRS. We used partial least square regression (PLS-R) modeling to predict SOC from vis-NIRS spectra referenced against in situ dry combustion measurements. The ability of our approach was validated in three setups: (1) calibration and validation data sets from the same location, (2) calibration and validation data sets from different locations, and (3) the same setup as in (2) with the calibration model enlarged with few samples from the opposite target area. Vis-NIRS predictions were successful in setup 1 (R-2 = 0.95, root mean square error of prediction [RMSEP] = 1.80 percent and R-2 = 0.82, RMSEP = 0.64 percent). Predictions in setup 2 had higher errors (R-2 = 0.90, RMSEP = 7.13 percent and R-2 = 0.78, RMSEP = 2.82 percent). In setup 3, the results were again improved (R-2 = 0.95, RMSEP = 2.03 percent and R-2 = 0.77, RMSEP = 2.14 percent). We conclude that vis-NIRS can obtain good results predicting SOC concentrations across two subarctic ecosystems, when the calibration models are augmented with few samples from the target site. Future efforts should be made toward determination of SOC stocks to constrain soil-atmosphere carbon exchange.
引用
收藏
页码:490 / 505
页数:16
相关论文
共 50 条
  • [1] A comparison of point and imaging visible-near infrared spectroscopy for determining soil organic carbon
    Askari, Mohammad Sadegh
    O'Rourke, Sharon M.
    Holden, Nicholas M.
    JOURNAL OF NEAR INFRARED SPECTROSCOPY, 2018, 26 (02) : 133 - 146
  • [2] Multiple-depth modeling of soil organic carbon using visible-near infrared spectroscopy
    Shahrayini, Elham
    Shafizadeh-Moghadam, Hossein
    Noroozi, Ali Akbar
    Eghbal, Mostafa Karimian
    GEOCARTO INTERNATIONAL, 2022, 37 (05) : 1393 - 1407
  • [3] Soil profile organic carbon prediction with visible-near infrared reflectance spectroscopy based on a national database
    Deng, F.
    Knadel, M.
    Peng, Y.
    Heckrath, G.
    Greve, M. H.
    Minasny, B.
    DIGITAL SOIL ASSESSMENTS AND BEYOND, 2012, : 409 - 413
  • [4] Prediction of soil organic carbon with different parent materials development using visible-near infrared spectroscopy
    Liu, Jinbao
    Han, Jichang
    Zhang, Yang
    Wang, Huanyuan
    Kong, Hui
    Shi, Lei
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2018, 204 : 33 - 39
  • [5] Field-scale predictions of soil contaminant sorption using visible-near infrared spectroscopy
    Paradelo, Marcos
    Hermansen, Cecilie
    Knadel, Maria
    Moldrup, Per
    Greve, Mogens H.
    de Jonge, Lis W.
    JOURNAL OF NEAR INFRARED SPECTROSCOPY, 2016, 24 (03) : 281 - 291
  • [6] Visible-near infrared spectroscopy to assess soil contaminated with cobalt
    Miranda Salazar, D.
    Martinez Reyes, H. L.
    Martinez-Rosas, M. E.
    Miranda Velasco, M. M.
    Arroyo Ortega, E.
    INTERNATIONAL MEETING OF ELECTRICAL ENGINEERING RESEARCH 2012, 2012, 35 : 245 - 253
  • [7] Prediction of Organic Carbon Content of Intertidal Sediments Based on Visible-Near Infrared Spectroscopy
    Lu Mei-rong
    Ren Guo-xing
    Li Xue-ying
    Fan Ping-ping
    Sun Zhong-liang
    Hou Guang-li
    Liu Yan
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40 (04) : 1082 - 1086
  • [8] Soil organic carbon and its fractions estimated by visible-near infrared transfer functions
    Rossel, R. A. Viscarra
    Hicks, W. S.
    EUROPEAN JOURNAL OF SOIL SCIENCE, 2015, 66 (03) : 438 - 450
  • [9] Soil organic carbon prediction using visible-near infrared reflectance spectroscopy employing artificial neural network modelling
    George, Justin K.
    Kumar, Suresh
    Raj, R. Arya
    CURRENT SCIENCE, 2020, 119 (02): : 377 - 381
  • [10] Effect of Different Particle Sizes on the Prediction of Soil Organic Matter Content by Visible-Near Infrared Spectroscopy
    Zhong Xiang-jun
    Yang Li
    Zhang Dong-xing
    Cui Tao
    He Xian-tao
    Du Zhao-hui
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42 (08) : 2542 - 2550