Soil organic carbon predictions in Subarctic Greenland by visible-near infrared spectroscopy

被引:10
|
作者
Ogric, M. [1 ,2 ]
Knadel, M. [3 ]
Kristiansen, S. M. [2 ]
Peng, Y. [3 ]
De Jonge, L. W. [3 ]
Adhikari, K. [4 ]
Greve, M. H. [3 ]
机构
[1] Univ Durham, Dept Geog, Sci Labs, Durham, England
[2] Aarhus Univ, Dept Geosci, Aarhus, Denmark
[3] Aarhus Univ, Dept Agroecol, Tjele, Denmark
[4] Univ Arkansas, Dept Crop Soil & Environm Sci, Fayetteville, AR 72701 USA
关键词
Soil organic carbon; visible-near-infrared spectroscopy; subarctic; Greenland; REFLECTANCE SPECTROSCOPY; NIR; VARIABILITY; LANDSCAPE; SPECTRA; MODELS; MATTER; REGRESSION; EROSION; SPIKING;
D O I
10.1080/15230430.2019.1679939
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Release of carbon from high-latitude soils to the atmosphere may have significant effects on Earth's climate. In this contribution, we evaluate visible-near-infrared spectroscopy (vis-NIRS) as a time- and cost-efficient tool for assessing soil organic carbon (SOC) concentrations in South Greenland. Soil samples were collected at two sites and analyzed with vis-NIRS. We used partial least square regression (PLS-R) modeling to predict SOC from vis-NIRS spectra referenced against in situ dry combustion measurements. The ability of our approach was validated in three setups: (1) calibration and validation data sets from the same location, (2) calibration and validation data sets from different locations, and (3) the same setup as in (2) with the calibration model enlarged with few samples from the opposite target area. Vis-NIRS predictions were successful in setup 1 (R-2 = 0.95, root mean square error of prediction [RMSEP] = 1.80 percent and R-2 = 0.82, RMSEP = 0.64 percent). Predictions in setup 2 had higher errors (R-2 = 0.90, RMSEP = 7.13 percent and R-2 = 0.78, RMSEP = 2.82 percent). In setup 3, the results were again improved (R-2 = 0.95, RMSEP = 2.03 percent and R-2 = 0.77, RMSEP = 2.14 percent). We conclude that vis-NIRS can obtain good results predicting SOC concentrations across two subarctic ecosystems, when the calibration models are augmented with few samples from the target site. Future efforts should be made toward determination of SOC stocks to constrain soil-atmosphere carbon exchange.
引用
收藏
页码:490 / 505
页数:16
相关论文
共 50 条
  • [1] A comparison of point and imaging visible-near infrared spectroscopy for determining soil organic carbon
    Askari, Mohammad Sadegh
    O'Rourke, Sharon M.
    Holden, Nicholas M.
    JOURNAL OF NEAR INFRARED SPECTROSCOPY, 2018, 26 (02) : 133 - 146
  • [2] Multiple-depth modeling of soil organic carbon using visible-near infrared spectroscopy
    Shahrayini, Elham
    Shafizadeh-Moghadam, Hossein
    Noroozi, Ali Akbar
    Eghbal, Mostafa Karimian
    GEOCARTO INTERNATIONAL, 2022, 37 (05) : 1393 - 1407
  • [3] Soil organic carbon prediction using visible-near infrared reflectance spectroscopy employing artificial neural network modelling
    George, Justin K.
    Kumar, Suresh
    Raj, R. Arya
    CURRENT SCIENCE, 2020, 119 (02): : 377 - 381
  • [4] Fusion of visible-to-near-infrared and mid-infrared spectroscopy to estimate soil organic carbon
    Hong, Yongsheng
    Munnaf, Muhammad Abdul
    Guerrero, Angela
    Chen, Songchao
    Liu, Yaolin
    Shi, Zhou
    Mouazen, Abdul Mounem
    SOIL & TILLAGE RESEARCH, 2022, 217
  • [5] Soil profile organic carbon prediction with visible-near infrared reflectance spectroscopy based on a national database
    Deng, F.
    Knadel, M.
    Peng, Y.
    Heckrath, G.
    Greve, M. H.
    Minasny, B.
    DIGITAL SOIL ASSESSMENTS AND BEYOND, 2012, : 409 - 413
  • [6] Prediction of soil organic carbon with different parent materials development using visible-near infrared spectroscopy
    Liu, Jinbao
    Han, Jichang
    Zhang, Yang
    Wang, Huanyuan
    Kong, Hui
    Shi, Lei
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2018, 204 : 33 - 39
  • [7] Field-scale predictions of soil contaminant sorption using visible-near infrared spectroscopy
    Paradelo, Marcos
    Hermansen, Cecilie
    Knadel, Maria
    Moldrup, Per
    Greve, Mogens H.
    de Jonge, Lis W.
    JOURNAL OF NEAR INFRARED SPECTROSCOPY, 2016, 24 (03) : 281 - 291
  • [8] Improving the accuracy of soil organic carbon content prediction based on visible and near-infrared spectroscopy and machine learning
    Xu, Mingxing
    Chu, Xianyao
    Fu, Yesi
    Wang, Changjiang
    Wu, Shaohua
    ENVIRONMENTAL EARTH SCIENCES, 2021, 80 (08)
  • [9] Prediction of Soil Organic Carbon at the European Scale by Visible and Near InfraRed Reflectance Spectroscopy
    Stevens, Antoine
    Nocita, Marco
    Toth, Gergely
    Montanarella, Luca
    van Wesemael, Bas
    PLOS ONE, 2013, 8 (06):
  • [10] Detecting the temporal trend of cultivated soil organic carbon content using visible near infrared spectroscopy
    Zayani, Hayfa
    Fouad, Youssef
    Michot, Didier
    Kassouk, Zeineb
    Lili-Chabaane, Zohra
    Walter, Christian
    JOURNAL OF NEAR INFRARED SPECTROSCOPY, 2023, 31 (05) : 241 - 255