Automatic detection lung infected COVID-19 disease using deep learning (Convolutional Neural Network)

被引:0
|
作者
Alameady, Mali H. Hakem [1 ]
Fahad, Ahmed [2 ]
Abdullah, Alaa [3 ]
机构
[1] Univ Kufa, Fac Comp Sci & Maths, Dept Comp Sci, Najaf, Iraq
[2] Univ Thi Qar, Al Nassiriya 64001, Iraq
[3] Minist Educ, Educ Directorate Thi Qar, Thi Qar, Iraq
来源
INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS | 2021年 / 12卷 / 02期
关键词
Deep learning; Convolutional Neural Network; COVID-19;
D O I
10.22075/ijnaa.2021.5148
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In late 2019, a virus appeared suddenly he claims Covid-19, which started in China and began to spread very widely around the world. And because of its effects, which are not limited to human life only, but rather in economic and social aspects, and because of the increase in daily injuries and significantly with the limited hospitals that cannot accommodate these large numbers, it is necessary to find an automatic and rapid detection method that limits the spread of the disease and its detection at an early stage in order to be treated more quickly. In this paper, deep learning was relied upon to create a CNN model to detect COVID-19 infected lungs using chest X-ray images. The base consists of a set of images taken of lungs infected with Covid-19 disease and normal lungs, as the CNN structure gave accuracy, Precision, Recall and F-Measure 100%.
引用
收藏
页码:921 / 929
页数:9
相关论文
共 50 条
  • [41] Optimal Deep Dense Convolutional Neural Network Based Classification Model for COVID-19 Disease
    Oliver, A. Sheryl
    Suresh, P.
    Mohanarathinam, A.
    Kadry, Seifedine
    Thinnukool, Orawit
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (01): : 2031 - 2047
  • [42] An Efficient Method for Covid-19 Detection Using Light Weight Convolutional Neural Network
    Bekhet, Saddam
    Alkinani, Monagi H.
    Tabares-Soto, Reinel
    Hassaballah, M.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (02): : 2475 - 2491
  • [43] Diagnosis of Covid-19 Patient Using Hyperoptimize Convolutional Neural Network (HCNN)
    Bohmrah, Maneet Kaur
    Sohal, Harjot Kaur
    INTERNET OF THINGS AND CONNECTED TECHNOLOGIES, 2022, 340 : 239 - 252
  • [44] A dual-stage deep convolutional neural network for automatic diagnosis of COVID-19 and pneumonia from chest CT images
    Sadik, Farhan
    Dastider, Ankan Ghosh
    Subah, Mohseu Rashid
    Mahmud, Tanvir
    Fattah, Shaikh Anowarul
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 149
  • [45] Pneumonia and COVID-19 Detection using Convolutional Neural Networks
    Militante, Sammy, V
    Dionisio, Nanette, V
    Sibbaluca, Brandon G.
    2020 THIRD INTERNATIONAL CONFERENCE ON VOCATIONAL EDUCATION AND ELECTRICAL ENGINEERING (ICVEE): STRENGTHENING THE FRAMEWORK OF SOCIETY 5.0 THROUGH INNOVATIONS IN EDUCATION, ELECTRICAL, ENGINEERING AND INFORMATICS ENGINEERING, 2020,
  • [46] DGCNN: deep convolutional generative adversarial network based convolutional neural network for diagnosis of COVID-19
    Laddha, Saloni
    Kumar, Vijay
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (22) : 31201 - 31218
  • [47] DGCNN: deep convolutional generative adversarial network based convolutional neural network for diagnosis of COVID-19
    Saloni Laddha
    Vijay Kumar
    Multimedia Tools and Applications, 2022, 81 : 31201 - 31218
  • [49] Comparative Analysis of COVID-19 X-ray Images Classification Using Convolutional Neural Network, Transfer Learning, and Machine Learning Classifiers Using Deep Features
    Rekha Rajagopal
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2021, 31 (02) : 313 - 322
  • [50] Automatic Detection of COVID-19 Using a Stacked Denoising Convolutional Autoencoder
    Dhahri, Habib
    Rabhi, Besma
    Chelbi, Slaheddine
    Almutiry, Omar
    Mahmood, Awais
    Alimi, Adel M.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (03): : 3259 - 3274