A machine learning approach to predict production time using real-time RFID data in industrialized building construction

被引:25
|
作者
Mohsen, Osama [1 ]
Mohamed, Yasser [1 ]
Al-Hussein, Mohamed [1 ]
机构
[1] Univ Alberta, Dept Civil & Environm Engn, Edmonton, AB T6G 1H9, Canada
关键词
Industrialized building construction; Prefabricated construction; Production time; Time prediction; RFID; Machine learning; KNOWLEDGE DISCOVERY; REGRESSION; INDUSTRY;
D O I
10.1016/j.aei.2022.101631
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Industrialized building construction is an approach that integrates manufacturing techniques into construction projects to achieve improved quality, shortened project duration, and enhanced schedule predictability. Time savings result from concurrently carrying out factory operations and site preparation activities. In an industrialized building construction factory, the accurate prediction of production cycle time is crucial to reap the advantage of improved schedule predictability leading to enhanced production planning and control. With the large amount of data being generated as part of the daily operations within such a factory, the present study proposes a machine learning approach to accurately estimate production time using (1) the physical characteristics of building components, (2) the real-time tracking data gathered using a radio frequency identification system, and (3) a set of engineered features constructed to capture the real-time loading conditions of the job shop. The results show a mean absolute percentage error and correlation coefficient of 11% and 0.80, respectively, between the actual and predicted values when using random forest models. The results confirm the significant effects of including shop utilization features in model training and suggest that predicting production time can be reasonably achieved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Predictive maintenance system for production lines in manufacturing: A machine learning approach using IoT data in real-time
    Ayvaz, Serkan
    Alpay, Koray
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 173 (173)
  • [2] A Compositional Approach for Real-Time Machine Learning
    Allen, Nathan
    Raje, Yash
    Ro, Jin Woo
    Roop, Partha
    17TH ACM-IEEE INTERNATIONAL CONFERENCE ON FORMAL METHODS AND MODELS FOR SYSTEM DESIGN (MEMOCODE), 2019,
  • [3] RFID-based tracking and monitoring approach of real-time data in production workshop
    Li, Xixing
    Du, Baigang
    Li, Yibing
    Zhuang, Kejia
    ASSEMBLY AUTOMATION, 2019, 39 (04) : 648 - 663
  • [4] Data-Triggered Approach for Real-Time Machine Learning in IoT Systems
    Cheng, Tou
    Coulibaly, Falla
    Patooghy, Ahmad
    Kursun, Olcay
    2020 IEEE 63RD INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2020, : 101 - 104
  • [5] A Real-Time Machine Learning Approach for Sentiment Analysis
    Sarkar, Souvik
    Mallick, Partho
    Banerjee, Aiswaryya
    INFORMATION SYSTEMS DESIGN AND INTELLIGENT APPLICATIONS, VOL 1, 2015, 339 : 705 - 717
  • [6] Panic Detection Using Machine Learning and Real-Time Biometric and Spatiotemporal Data
    Lazarou, Ilias
    Kesidis, Anastasios L.
    Hloupis, George
    Tsatsaris, Andreas
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (11)
  • [7] Application of machine learning model on streaming health data event in real-time to predict health status using Spark
    Ed-daoudy, Abderrahmane
    Maalmi, Khalil
    2018 INTERNATIONAL SYMPOSIUM ON ADVANCED ELECTRICAL AND COMMUNICATION TECHNOLOGIES (ISAECT), 2018,
  • [8] A machine learning approach for real-time cortical state estimation
    Weiss, David A.
    Borsa, Adriano M. F.
    Pala, Aurelie
    Sederberg, Audrey J.
    Stanley, Garrett B.
    JOURNAL OF NEURAL ENGINEERING, 2024, 21 (01)
  • [9] Real-time traffic congestion prediction using big data and machine learning techniques
    Chawla, Priyanka
    Hasurkar, Rutuja
    Bogadi, Chaithanya Reddy
    Korlapati, Naga Sindhu
    Rajendran, Rajasree
    Ravichandran, Sindu
    Tolem, Sai Chaitanya
    Gao, Jerry Zeyu
    WORLD JOURNAL OF ENGINEERING, 2024, 21 (01) : 140 - 155
  • [10] Machine learning algorithms for real-time coal recognition using monitor-while-drilling data
    Zagre, G. E.
    Gamache, M.
    Labib, R.
    Shlenchak, Viktor
    INTERNATIONAL JOURNAL OF MINING RECLAMATION AND ENVIRONMENT, 2024, 38 (01) : 27 - 52