POINT INTERACTIONS;
3-BODY INTERACTION;
ONE-DIMENSION;
POTENTIALS;
SYSTEM;
RENORMALIZATION;
STATES;
D O I:
10.1007/s00601-014-0924-1
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
This work is devoted to the study of some exactly solvable quantum problems of four, five and six bodies moving on the line. We solve completely the corresponding stationary Schrodinger equation for these systems confined in an harmonic trap, and interacting pairwise, in clusters of two and three particles, by two-body inverse square Calogero potential. Both translationaly and non-translationaly invariant multi-body potentials are added. In each case, the full solutions are provided, namely the normalized regular eigensolutions and the eigenenergies spectrum. The irregular solutions are also studied. We discuss the domains of coupling constants for which these irregular solutions are square integrable. The case of a "Coulomb-type" confinement is investigated only for the bound states of the four-body systems.
机构:
Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USAWashington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA
Rakshit, D.
Blume, D.
论文数: 0引用数: 0
h-index: 0
机构:
Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA
Harvard Smithsonian Ctr Astrophys, ITAMP, Cambridge, MA 02138 USAWashington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA
机构:
Hollins Univ, Dept Phys, Roanoke, VA 24020 USA
Univ Virginia, Dept Phys, Charlottesville, VA 22904 USAHollins Univ, Dept Phys, Roanoke, VA 24020 USA
机构:
Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USAWashington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA
Rakshit, D.
Blume, D.
论文数: 0引用数: 0
h-index: 0
机构:
Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA
Harvard Smithsonian Ctr Astrophys, ITAMP, Cambridge, MA 02138 USAWashington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA
机构:
Hollins Univ, Dept Phys, Roanoke, VA 24020 USA
Univ Virginia, Dept Phys, Charlottesville, VA 22904 USAHollins Univ, Dept Phys, Roanoke, VA 24020 USA