A posteriori error estimates and domain decomposition with nonmatching grids

被引:2
作者
Pousin, J [1 ]
Sassi, T [1 ]
机构
[1] Inst Natl Sci Appl, MAPLY, CNRS UMR 5585, F-69621 Villeurbanne, France
关键词
numerical analysis for PDE; nonlinear elliptic problems; a posteriori error estimates; domain decomposition;
D O I
10.1007/s10444-004-1779-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F be a nonlinear mapping defined from a Hilbert space X into its dual X', and let x be in X the solution of F(x)=0. Assume that, a priori, the zone where the gradient of the function x has a large variation is known. The aim of this article is to prove a posteriori error estimates for the problem F(x)=0 when it is approximated with a Petrov-Galerkin finite element method combined with a domain decomposition method with nonmatching grids. A residual estimator for a model semi-linear problem is proposed. We prove that this estimator is asymptotically equivalent to a simplified one adapted to parallel computing. Some numerical results are presented, showing the practical efficiency of the estimator.
引用
收藏
页码:241 / 263
页数:23
相关论文
共 31 条
  • [1] Adams R., 1975, Sobolev space
  • [2] AGHOSKOV VI, 1988, P 1 INT S DOM DEC ME
  • [3] ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS
    BABUSKA, I
    RHEINBOLDT, WC
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) : 736 - 754
  • [4] BABUSKA I, 1986, ADAPTIVITY POSTERIOR
  • [5] BABUSKA I, 1978, INT J NUMER METH ENG, V12, P736
  • [6] Ben Belgacem F, 1999, NUMER MATH, V84, P173, DOI 10.1007/s002119900100
  • [7] BERNARDI C, 1995, CR ACAD SCI I-MATH, V320, P373
  • [8] BERNARDI C, 1993, NONLINEAR PARTIAL DI, V11
  • [9] BRAMBLE JH, 1987, MATH COMPUT, V49, P1, DOI 10.1090/S0025-5718-1987-0890250-4
  • [10] Brezzi F., 2012, MIXED HYBRID FINITE, V15