On the complexity of algebraic numbers I. Expansions in integer bases

被引:97
|
作者
Adamczewski, Boris [1 ]
Bugeaud, Yann
机构
[1] Univ Lyon 1, CNRS, F-69622 Villeurbanne, France
[2] Univ Strasbourg, F-67000 Strasbourg, France
关键词
D O I
10.4007/annals.2007.165.547
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let b > 2 be an integer. We prove that the b-ary expansion of every irrational algebraic number cannot have low complexity. Furthermore, we establish that irrational morphic numbers are transcendental, for a wide class of morphisms. In particular, irrational automatic numbers are transcendental. Our main tool is a new, combinatorial transcendence criterion.
引用
收藏
页码:547 / 565
页数:19
相关论文
共 50 条
  • [31] On numbers which are differences of two conjugates of an algebraic integer
    Dubickas, A
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 65 (03) : 439 - 447
  • [32] COMPLEXITY OF COMPUTATION ON REAL ALGEBRAIC-NUMBERS
    ROY, MF
    SZPIRGLAS, A
    JOURNAL OF SYMBOLIC COMPUTATION, 1990, 10 (01) : 39 - 51
  • [33] Real Algebraic Numbers: Complexity Analysis and Experimentation
    Emiris, Ioannis Z.
    Mourrain, Bernard
    Tsigaridas, Elias P.
    RELIABLE IMPLEMENTATION OF REAL NUMBER ALGORITHMS: THEORY AND PRACTICE, 2008, 5045 : 57 - +
  • [34] AN ALGEBRAIC APPROACH TO ENTROPY PLATEAUS IN NON-INTEGER BASE EXPANSIONS
    Allaart, Pieter C.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (11) : 6507 - 6522
  • [35] Liouville Numbers and the Computational Complexity of Changing Bases
    Jakobsen, Sune Kristian
    Simonsen, Jakob Grue
    BEYOND THE HORIZON OF COMPUTABILITY, CIE 2020, 2020, 12098 : 50 - 62
  • [36] On the b-ary expansions of algebraic irrational numbers (survey)
    Kaneko, Hajime
    DIOPHANTINE ANALYSIS AND RELATED FIELDS 2011 (DARF 2011), 2011, 1385 : 49 - 57
  • [37] On the number of nonzero digits in the beta-expansions of algebraic numbers
    Kaneko, Hajme
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2016, 136 : 205 - 223
  • [38] Rational approximation to values of G-functions, and their expansions in integer bases
    Fischler, S.
    Rivoal, T.
    MANUSCRIPTA MATHEMATICA, 2018, 155 (3-4) : 579 - 595
  • [39] Rational approximation to values of G-functions, and their expansions in integer bases
    S. Fischler
    T. Rivoal
    manuscripta mathematica, 2018, 155 : 579 - 595
  • [40] Expansions in non-integer bases: Lower, middle and top orders
    Sidorov, Nikita
    JOURNAL OF NUMBER THEORY, 2009, 129 (04) : 741 - 754