Pyrolysis of transformer insulating paperboard: determining kinetics, reaction mechanism, thermodynamic characteristics and volatile products using TG-FTIR and Py-GC/MS analyses

被引:6
作者
Zhang, Jiaqing [1 ,5 ]
Guo, Yi [1 ]
Shi, Long [2 ]
Liu, Qiang [3 ]
Jiang, Shixiong [3 ]
Li, Yaoqiang [4 ,5 ]
Li, Kaiyuan [4 ]
机构
[1] State Grid Anhui Elect Power Res Inst, Anhui Prov Key Lab Elect Fire & Safety Protect, State Grid Lab Fire Protect Transmiss & Distribut, Hefei 230601, Peoples R China
[2] RMIT Univ, Sch Engn, Civil & Infrastruct Engn Discipline, Melbourne, Vic 3004, Australia
[3] State Grid Fujian Elect Power Co Ltd, Fuzhou 350000, Peoples R China
[4] Wuhan Univ Technol, Sch Safety Sci & Emergency Management, Luoshi Rd 122, Wuhan 430070, Peoples R China
[5] State Grid Anhui Elect Power Co LTD, Elect Power Res Inst, Hefei 230601, Peoples R China
关键词
TIPB; Pyrolysis; TG-FTIR; Py-GC/MS; Kinetic parameters; Thermodynamic parameters; CELLULOSE PYROLYSIS; THERMAL-DEGRADATION; HEATING RATE; WASTE; HEMICELLULOSE; DECOMPOSITION; COMBUSTION; ACTIVATION; PARAMETERS; BEHAVIORS;
D O I
10.1007/s10973-022-11385-6
中图分类号
O414.1 [热力学];
学科分类号
摘要
Transformer insulating paperboard (TIPB) is widely used in the power transformers. It is crucial to study the pyrolysis of TIPB for energy conservation and risk assessment purposes. As TIPB is made of unbleached sulphate wood pulp, with cellulose as the main component and removing lignin, its pyrolysis behaviours are different from general biomass. In this paper, thermogravimetric (TG) experiments are firstly used to investigate the pyrolysis characteristics of TIPB at multiple heating rates. The results show that the pyrolysis temperature range is in between those of hemicellulose and cellulose. The pyrolysis residue yield is approximately 25%, which is close to the char yield of hemicellulose and much higher than the one of cellulose. The average activation energy calculated using model-free methods is 187.79 kJ mol(-1) , being close to the activation energy of cellulose. The most suitable average activation energy (E), pre-exponential factor (lnA) and kinetic model of TIPB pyrolysis are determined as 183.84 kJ mol(-1) , 30.60 s(-1) and g(alpha) = (1 - alpha)(-1/2) - 1, respectively. The FTIR analysis indicates that the pyrolysis volatile products are mainly CO2, H2O and the functional groups containing C=C and C=O bond. The production of CO2 is the highest among all products, while the highest production of organic products belongs to the C=C functional groups of aromatics. The CO2 is produced by the decomposition of cellulose at low temperature and aromatic condensation reactions at high temperature. Combining the results of Py-GC/MS and FTIR shows that the contents of phenols, furans and carbohydrates are lower than the ones of aromatics excluding phenols. The occurrences of ketones, furans, aldehydes and carbohydrates denote the pyrolysis of cellulose, while the palmitic acid proves the existence of hemicellulose in TIPB. The products contain substances with high heat values including the toluene and palmitic acid. Finally, the enthalpy (Delta H), entropy (Delta S) and Gibbs free energy (Delta G) are calculated. The difference between E and Delta H is similar to 5 kJ mol(-1), indicating that the pyrolysis products are easily formed. Delta S drops to negative values when the conversion rate is higher than 0.4, at which point the reaction system reaches thermal equilibrium. Delta G increases with conversion rate, indicating that the total absorbed heat increases during pyrolysis.
引用
收藏
页码:12201 / 12216
页数:16
相关论文
共 50 条
  • [41] TG-FTIR and Py-GC/MS combined with kinetic model to study the pyrolysis characteristics of electrolytic manganese residue
    Duan, Jiangfei
    Feng, Shengxia
    He, Weilong
    Li, Rui
    Zhang, Peng
    Zhang, Yu
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2021, 159
  • [42] TG-FTIR and Py-GC/MS analyses of pyrolysis behaviors and products of cattle manure in CO2 and N2 atmospheres: Kinetic, thermodynamic, and machine-learning models
    Zhang, Junhui
    Liu, Jingyong
    Evrendilek, Fatih
    Zhang, Xiaochun
    Buyukada, Musa
    ENERGY CONVERSION AND MANAGEMENT, 2019, 195 : 346 - 359
  • [43] Kinetics and Products Distribution Study on the Catalytic Effect of Zn/HZSM-5 over Pyrolysis of Chlorella through TG-FTIR and Py-GC/MS
    Lu Wang
    Tao Ye
    Xianming Ma
    Yan Lin
    Juan Chen
    Fangbin Wang
    Peiyong Ma
    Jian Liu
    Journal of Thermal Science, 2023, 32 : 1635 - 1643
  • [44] Evolution characteristics of products retorted from Gonghe oil shale based on TG-FTIR and Py-GC/MS
    Zhang, Huarong
    Wang, Sha
    Shi, Cong
    Yan, Jinbiao
    Ge, Xiang
    Shen, Jun
    Chen, Bin
    Jiang, Xiumin
    Guo, Yun
    THERMOCHIMICA ACTA, 2022, 716
  • [45] Analytical Pyrolysis of Soluble Bio-Tar from Steam Pretreatment of Bamboo by Using TG-FTIR and Py-GC/MS
    Feng, Yongshun
    Pan, Xin
    Qiao, Hui
    Zhuang, Xiaowei
    MATERIALS, 2024, 17 (09)
  • [46] Use of coupled TG-FTIR and Py-GC/MS to study combustion characteristics of conveyor belts in coal mines
    Zhang, Duo
    Liu, Maoxia
    Wen, Hu
    Deng, Jun
    Wang, Weifeng
    Shu, Chi-Min
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2023, 148 (11) : 4779 - 4789
  • [47] Thermal cracking behavior, products distribution and char/steam gasification kinetics of seawater Spirulina by TG-FTIR and Py-GC/MS
    Li, Jie
    Tian, Yuanyu
    Zong, Peijie
    Qiao, Yingyun
    Qin, Song
    RENEWABLE ENERGY, 2020, 145 (145) : 1761 - 1771
  • [48] Thermal degradation behaviour, kinetics, and thermodynamics of Bombax Malabarica seeds through TG-FTIR and Py-GC/MS analysis
    Volli, Vikranth
    Varma, Ravi
    Pradhan, Debalaxmi
    Panda, Achyut Kumar
    Singh, Raghubansh Kumar
    Shu, Chi -Min
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2023, 57
  • [49] Analysis of catalytic pyrolysis of municipal solid waste and paper sludge using TG-FTIR, Py-GC/MS and DAEM (distributed activation energy model)
    Fang, Shiwen
    Yu, Zhaosheng
    Ma, Xiaoqian
    Lin, Yan
    Chen, Lin
    Liao, Yanfen
    ENERGY, 2018, 143 : 517 - 532
  • [50] TG-FTIR-MS and Py-GC/MS study on the pyrolysis characteristics and gas evolution behavior of forest duff
    Yang, Jiuling
    Wang, Haoliang
    Huang, Wei
    Peng, Xiaofeng
    Yuan, Bo
    Hu, Yuqi
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2023, 176